mFullContact

BotOrNot:
Finding Fraud Accounts using Patterns

Rece Coffin
David Henningsen
Christian McErlean

Ian Tobiason

June 20, 2017

Introduction

In the modern age most people have a significant online presence through email and
social media, each of which have their own system of managing friends or contacts. FullContact
takes on the challenge of gathering these contacts from all other locations and placing them into
a single, more robust contact. They do this by providing an online platform for users to sign up
for that allows them to import contacts and information from all over to build an easy to manage
contact list. This platform also gives users tools to further populate their contacts such as the
ability to scan in and transcribe business cards or parse information from email signatures. In
addition to the tools build by FullContact, an API is provided for developers to use this platform
to build their own tools. FullContact’s goal is to give people the tools they need to effectively
manage their contacts and interact with other people.

FullContact’s online platform is publicly available with some features even being
provided for free. One of the companies ideologies is to make their service easily accessible to
new users, this coupled with the free features leaves the platform open to signups by fraudulent
bot accounts. These bot accounts have a negative impact on the system as they increase cost and
skew the data collected by the company. The purpose of this project is to develop an application
to flag fraudulent accounts based on information given when the account is created.
Additionally, the application uses a machine learning model in order to learn from past fraud
events and detect an increasing number of fraud accounts the longer it is in place.

Requirements

Functional Requirements:
The Bot or Not detection tool utilizes machine learning algorithms to detect bot accounts on the
Full Contact server and create an interface to allow a human to manually review flagged
accounts and determine whether the account is fraudulent or not.
Specific Requirements:

1. Train an automated system to detect bot accounts across the FullContact database.

2. Train an automated system to detect bot accounts shortly after sign up.

3. Create a graphic interface to manually review a flagged account.

Non-Functional Requirements:
1. Code style is consistent with FullContact style guides.
2. Application is written in Java using Java machine learning libraries.
3. Application only uses data acquired from the time the account is created.
4. Application is flexible enough to be applied to other databases should we extend this
project as a SaaS.

Risks:
Technology Risks
e Trouble receiving live data from the company’s database
e [earning algorithm gives too many false negatives (Not detecting bots)
e Training the classifier models takes too long, limiting debugging
Skills Risks
e Poor choice in machine learning model, resulting in a model that does not
improve as more data comes in
e Training the model takes too long, making the application hard to use.

Definition of Done:

The finished product is a fully integrated bot detection software that identifies high risk
accounts at creation. The software then displays, through some sort of graphic interface, the
accounts in question with the data used to classify the account as a likely bot in order for a
human to make the final decision. The software is integrated with the existing FullContact server
and be run on daily basis to analyze account provisions for that day.

Svstem Architecture

Figure 1 below outlines the architecture of our application. The account information is
taken from the FullContact database and exported to a text file in a format readable by the
clustering library. After being clustered, each cluster in the training data set is analyzed and
given one of three rankings: 2 for clusters that contain 100% human accounts, 1 for clusters that
contain more than 70% fraudulent accounts, and 0 for clusters that contain less than 70% bots
and not 100% humans.

These clusters are then sent into the featurizer which analyzes each account within the
cluster, once it analyzes each account it scores the entire cluster and saves a number of cluster
specific features. After the features are determined and stored, each cluster is passed into the
machine learning model with the specific features as well as the cluster rank to be used for
training. A small subset of the data collected is withheld in order to be passed into the model for
evaluation. The evaluation is done by giving the model a small set of already scored data and
comparing the output from the model to the ideal score given to that cluster manually. This is
how we are able to test a variety of feature sets and determine what information is going to
provide us with the most accurate predictions.

Once the model has been trained on known data, we can pass new data to be scored. The
clusters from the new data that are identified as containing a large amount of bots are sent to a
user interface in order to be manually reviewed and approved or rejected. From there, the
accounts that were manually reviewed are given a score and appended to the existing training

data to be used for future evaluations. This allows for the model to continually learn from new
fraud events, in hopes of preventing similar patterns from occurring in the future.

Figure 1

All Accounts | —— & Build Feature

Columns
 Clustering Algorithm
Cluster 47 Cluster
1 Cluster k
\5 | / e
Machine Learning
Cluster Featurizer = Algorithm
(Account Scorar)
Cluster 4' Cluster
1 k
(Scored) Cluster 2 (Scored)

(Scored)

Figure 2 on the next page outlines the datapath implemented by the application. End

(Bot or Human)

J Clusters Labeled

=

users can create accounts using a portal on FullContact’s website, the account’s information is
stored in the Identibase database and the account creation event itself is stored in the Gawker
database. Our software is implemented on an internal server that makes calls to these databases.
The initial call to the Gawker Database gives us the account number, time of account provision,
and other information collected when the account is created. Using the account number, the
application is able to cross reference Identibase, which is the FullContact data warehouse, and
collect the email address, password commonality, and I.P. address associated with that account
number.

This information is combined and condensed into a single file stored on the server. The
file contains all of the information to be used to cluster the accounts. The file is read and
processed by the clustering application. After our application runs we are left with a list of
accounts that have a high chance of being bots and these are saved and sent to a team to
manually verify if they are fraudulent accounts or not.

Figure 2

End Users -
J' /

P Gawker Database %
XTI - FITITT o
WIrssy e IATTET ©
:] I TTTT]
:

T FITT © FullContact Internal Server

FullContact
Provisioning Server

identibase

Flagged Account
Review Team

Technical Design

When first approaching the problem we were given a large set of data with the task of
creating a machine learning model to classify new account signups as regular or fraudulent bot
accounts. We had access to information about these accounts such as the time they signed up or
the email address they used. The problem is that when looking at these fraudulent accounts in a
vacuum it is hard to tell if they are bots or not. To actually tell with the information available at
signup we had to compare them to accounts made around the same time. Previously an
exploratory attempt was made by our client to feed different features on an account by account
basis that was meet with mixed results. To get features that we knew would be more adept at
determining whether accounts being made were part of fraudulent events we knew that we would
have to find a way to incorporate patterns between signups into our model.

We decided the best approach was to first cluster these accounts together based upon
information collected at the time of sign up. This technique allowed us to analyze accounts with
similar attributes and determine patterns that could distinguish accounts as fraudulent. Once
these accounts were grouped we lost most of our ability to use their individual features in the
next step of our model, classifying clusters as humans or bots. Losing this presented a challenge
and an opportunity as we were forced to have features that were unique to clusters instead of
individual accounts. This meant we were able to look for patterns within the clusters themselves

and give these patterns numeric scores based on their presence and how prevalent they are. The
process is shown in Figure 3 were the featurizer takes in data from every account in the cluster
and outputs a single feature for the cluster. The thought behind this is that if the accounts have
similar signup activity but then also show patterns that would be unlikely in for humans who act
differently then it would be a grouping of accounts made by one person most likely using a

script.
Figure 3
Cluster A
Accounts Features of
Accounts
Account 1 () '
i | 4
Account 2 C)l . Feature of
= | . Featurizer
& —> Cluster A
i | S
Account 3 L JIC)
Account 4 (Ot)

When designing our model and overall system we had to keep in mind how to make it
run smoothly and regularly in a production environment. Clustering requires us to look at sums
of events at a time so we realistically couldn’t run each new account through our model at the
provisioning stage. To properly handle this we decided to go with a daily run where we take all
of the new sign ups for the day and cluster them to run through our model for classification.
FullContact usually sees around a thousand signups on a daily basis so we designed the way we
handle the data with this in mind. We cluster with the goal of having around 10 new accounts per
cluster meaning with the actual number of clusters being based on the number of accounts
created that day.

The problem of clustering these accounts by the day means that they are going to not be
as accurate as clusters made by clustering bigger datasets. Using the larger dataset results in very
tight clusters represented by by the “overfit cluster” in Figure 4. Looking at a day's worth of data

resulted in the “real cluster”. When clustering hundreds of thousands of events at once, we
received much more accurate specific clusters. The problem was, we found that clusters from
only 1000 events were less accurate and harder to score based on the training data that was
clustered in larger numbers. We combated this problem by breaking apart the training data into
sets of around 1000-1500 accounts, and clustering only these small subsets at a time. The
thought process behind this was that it would lead to clusters similar to the one we would get
from a daily run, that way the data we used to train the model would look much more similar to
the data we hope to classify daily. An unforeseen benefit of this change was that our application
now runs considerably faster. The clustering of the data in small groups made that portion of the
application run in just a fraction of the previous time, as well as improved the accuracy of our
machine learning algorithm.

Figure 4

"Overfit" Cluster "Real" Cluster

Real clusters may be less accurate than the overfit, but they more closely model the data our application
will receive when it is run on a daily basis.

Decisions

Language - We are using Java for our solution because the existing code already in place was
also written in Java. We also feel that as a team, we are most comfortable using Java. There are
also a great number of machine learning libraries available in Java for use to choose from.

Weka Library for clustering - We decided to use the Weka library for clustering after
experimenting with other libraries such as Encog, Deeplearning4j, and Java-ML. Of all these
libraries Weka was the easiest to use and understand. It also gave us the best results of any of the
libraries we used. Using the same features with the Encog and Java-ML clustering algorithms we

get significantly lower percentages of good quality clusters. These results, and the ease of use,
were what drove us to choose the Weka library for our clustering algorithm.

Encog Library for machine learning - We decided to use the Encog library for machine learning
because the previous code already had a model using Encog in place. Our hopes were that we
could apply our clustering model on top of the existing machine learning without much
modification. We ended up writing our own machine learning model, but it was very similar to
what was already in place. After much time spent deriving a set of features to pass into the
model, we started getting very good accuracy results. Because of our good results and the limited
time we had for this whole project, we did not explore many other machine learning libraries.

Machine learning model - The machine learning model we are using currently is a Support
Vector Machine (SVM) model. The SVM model is a supervised learning machine learning
model, this means that we provide the model with already classified data in order to train before
providing it with new data to score. Using a supervised model like this allows us to continually
change and update the data we are training with. This gives us the ability to update it in the event
we discover a fraud event that was not previously detected, by constantly updating the training
data we can prevent attackers from using the same approach for multiple fraud events.

Results

The main goal for the project was to build an automated system that detects fraudulent
accounts both across the entire database and in real time as accounts are created, then to have
those accounts available for review in a user interface. This goal is accomplished by clustering
account events based upon the time the account was provisioned, its IP address, its email prefix
rate, and its email domain rate. Then email domain frequency, email domain popularity, email
pattern frequency, average rate of provisioned accounts for the previous hour, the average length
of the domain and prefix of the accounts within the cluster, and the average rate a specific prefix
appears within a cluster are extracted as cluster specific features. A machine learning model is
trained with these cluster features and a known “cluster specification” (all genuine, all/mostly
fraudulent accounts, or unknown mix). The model will then be able to, based upon the training
data, give unknown clusters a specification. The logic behind the feature sets is that if one
clusters the data using a feature set that forms mostly homogenous clusters, then one can design
another feature set, for the clusters, that will be used for the machine learning algorithm to detect
the cluster specification. The account events in each cluster specified as all/mostly fraudulent
accounts or as an unknown mix can then be viewed and manually labeled in a user interface.

Depending on the data it was found that around 85% of clusters were either 100%
genuine accounts or >= 70% fraudulent accounts. Using some validation data sets we were able
to determine that around 99% of genuine clusters and around 96% of all/mostly fraudulent
clusters are labeled correctly. Overall about 90% of fraudulent accounts are predicted to be
caught by this program.

Future work can always include updating, adding, and changing the two feature sets used
for the clustering and machine learning, better feature sets is the main avenue to improve the
program. As clustering is working fairly well in the current version, future improvements would
most likely occur by designing new cluster specific features to better train the machine learning
model with. Had there been more time to develop this project, we could have derived better
feature lists and possible achieved much higher accuracy, in both the clustering and machine
learning.

It was learned throughout this project that communication and research is key before
starting anything, or time will likely be used inefficiently or wasted entirely. It was also learned
that the outcome of a machine learning program relies heavily on the quality and quantity of data
available. If too many features are used to cluster it will likely result in overfitting, where the
machine learning algorithm will be unable to properly specify a cluster because it looks too
unique. Overall we learned a great deal about machine learning and how dependent it is on the
data you are using.

