
DrillingInfo Transform Launcher

Derek Foundoulis, Jake Meister, Cat Wylie

CSCI370 - Advanced Software Engineering

Final Report

June 20, 2017

Contents

1 Introduction . 2
2 Requirements . 3

2.1 Definition of Project . 3
2.2 Functional Requirements . 3
2.3 Non-Functional Requirements 3

3 System Architecture . 5
3.1 Electron Basics . 5
3.2 Starting the Application . 5
3.3 Login Screen . 6
3.4 Main Screen . 6

4 Technical Design . 8
5 Decisions . 11

5.1 Electron . 11
5.2 HTML/CSS/JavaScript . 11
5.3 Node.js . 11
5.4 RSS News Feed . 11
5.5 Login Screen Format . 11

6 Results . 12
6.1 Lessons Learned . 12

1

1 Introduction

This paper covers the 2017 Field Session for DrillingInfo at the Colorado School of
Mines.

DrillingInfo is a company based out of Austin, Texas that provides a wide array
of services, which provide data on drilling for its 2,500 global clients. Their prod-
ucts range from a large JavaFX program, Transform, to a widget that populates
spreadsheets with up to date drilling information. Transform is a large program that
displays and interprets geological, geophysical, and other engineering data to its users.

For this Field Session they asked us to create a program launcher for Transform
that allows DrillingInfo to control the client use and update frequency of their product
on the client’s computer. The design requested of us was a massively multiplayer on-
line game style launcher programmed in Electron that launches, updates, technically
manages, and helps to sell Transform to customers of DrillingInfo.

The Electron framework provides an easy way to display a graphical user interface
and to communicate with DrillingInfo’s authentication and updating services, (Elec-
tron is a specialized Chromium Browser that displays web-pages as regular desktop
applications.) which are hosted with Amazon Web Services (AWS). The design con-
tains two windows, the Login Screen and the Main Screen. These screens work in
tandem, allowing for a simple and easy to use user interface that is discretely con-
nected to the web.

2

2 Requirements

2.1 Definition of Project

We built an Electron based launcher for DrillingInfo’s Transform application. The
application handles the updating, maintaining, user permissions, and launching of
the program itself. Electron provides a clean interface for users to update when they
prefer, unless DrillingInfo fores the update. The Electron framework provides smooth
JavaScript interpretation and a way to hide the use of the Internet from users who
prefer their data and tools exist offline.

The launcher also displays a blog and other tools from DrillingInfo; alternatively,
this could be provided by the client. The program will also be modifiable to add more
tools through a server side file provided to the launcher. Other parts are adaptive
and easy to expand to allow more functionality without changing the program.

2.2 Functional Requirements

• The program launches, updates, removes, and otherwise protects the jars for
Transform.

• The program implements voluntary updates, and displays a status bar while
doing so. The update information is stored in JSON files.

• There is a display for user permissions that prevents them from launching any-
thing that they do not have permission for.

• The permission system uses cookies to hold information for 15 days, allowing
the user to use the program without Internet access.

• Furthermore the program allows for the implementation of tools that may be
defined by the local user or by DrillingInfo. These will also use jars.

• The program displays a blog held by AWS and the logo.

2.3 Non-Functional Requirements

• The program uses Electron.

• The program has a version drop-down, which allows the user to switch between
versions of Transform.

• The program has a news feed for DI news that will be updated continuously.

• The program as an update button and corresponding progress bar for the up-
date.

3

• The program has a launch button.

• The program has a login page where the user will enter their credentials.

• The program shows entitlements.

• The program displays the username.

• The program allows for the addition of tools in a toolbox, local or foreign.

4

3 System Architecture

3.1 Electron Basics

Electron is a framework for building desktop applications using web tools (HTML/C-
SS/JavaScript). The framework was originally designed for the editor Atom, under
the name atom-shell. Under the hood Electron is a modified Chromium browser for
offline use.

The framework is comprised of two basic parts, the main process and the renderer
process. The main process manages the browsers, and allows the designer to open
more windows. Each of these windows is a renderer process that can fail without tak-
ing down the whole program. These traits are inherited from Chromium Everything
outside of main.js is in a renderer process. If main fails the entire program fails with
it. Each of the renderer processes can communicate with the main process through
an inter process communications (IPC) channel, this allows coordination between the
windows. In the launcher that we built, there is only one renderer process.

3.2 Starting the Application

When the application starts, it enters the main.js file. This is the primary point
of entry is defined in the package.json file provided by the Node Package Manager
(npm). The main.js handles the interaction between the window and Electron.

Imports

The script first imports packages that allow the program to run, including ‘electron’,
‘path’, ‘url’, and ‘request’. These are stored into constant variables for later use.

Declarations

The main.js script then allocates space for global variables that are visible to pro-
cesses outside of the main process. The primary window variable is declared.

Cookies

Because Electron is a modified browser and has the ability to store cookies, however,
these are stored in page as they are in a modern browser they are stored in the main
process. This part of the script enables the main process to listen for requests for
cookies in the main browser.

Application variable

The next declarations tell Electron what to do when the framework is ready to launch
and close. There is also special handling for macOS.

5

Creating the window

The application launches, when ready, into the function createWindow() which at-
taches a browserWindow to the variable win. This function also deallocates win when
the program exits. This causes the window to vanish really fast rather than waiting
for the entire process to exit.

3.3 Login Screen

Figure 1: Log In Screen

login.html is the first page that is loaded when
the window displays. This page takes in the
user’s username and password and returns it to
the main process. This page checks these cre-
dentials against hard coded user-names and pass-
words, due to client security concerns. This is
a huge security vulnerability, but the accounts
we were given do not exist outside of a bucket
on DrillingInfo’s Amazon Web Services (AWS)
server. When the sign in button is pressed the
page redirects to mainscreen.html.

The login page also has links to support,
forgotten passwords, and a place to register to
buy transform products. These are more selling
points for DrillingInfo.

3.4 Main Screen

The main screen, which is located in mainscreen.html provides most of the function-
ality for the program. The window is broken into seven parts: version, user-name,
permissions, RSS feed, tools, update, and launch. The main script is located inside
mainscreen.html. It controls and manages the seven parts.

The version window is currently hard coded. The user-name comes from the global
variable in the set from the login screen. Permissions are loaded from the server and
the icons are changed accordingly. The RSS feed is connected to a XML file from
DrillingInfo’s feed and the cache is updated once a day. RSS feeds are built into
JavaScript. The tools are found in the configuration JSON file, in the future, users
will be able to personalize these tools with a default from DrillingInfo.

Update and launch buttons provide the primary functionality for the program.
They are enabled and disabled based upon the user’s permissions. The update button
downloads the files from DrillingInfo’s S3 server.

6

Figure 2: Main Screen

The launch button first checks to make sure there is not a forced update, then it
launches Transform by building the UNIX command to launch and attaching it to a
child process. This launches the .jar application.

7

4 Technical Design

The Chromium browser, that Electron runs on, uses a separation of processes to
maintain program integrity. In this way, if a renderer process fails and becomes
non-responsive, the main process will remain healthy. However, programming in this
interface requires inter process communication to transfer data between the main pro-
cess and the renderer process. Modules, JavaScript’s libraries, are specific to certain
processes making it dependent on the programmer to understand this architecture
for working code. For example, the module used to store and retrieve cookies is only
held within the main process, and requires a data transfer from the renderer process
to store any variable data. These processes do not share variable values. A way
to get around this conundrum is exporting the file as a module and creating getter
functions for the variables needed. This work around was used in several instances
in the code, but a more secure and proper way of doing so is through IPC messages.
Unfortunately, due to time constraints, these changes could not be implemented.

Splitting processes and automatic threading ensures that Electron runs quickly.
JavaScript similarly uses asynchronous function calls to run quickly. While JavaScript
is compiled during runtime, it looks at all the function calls available in the current
scope and feeds them into the call stack in a seemingly random order. This presents
several issues such as data being used before it is written. Because this behavior
is counterintuitive, there were many instances of this asynchronous behavior ruining
functional code.

JavaScript introduces the callback mechanism to deal with asynchronous behav-
ior. Callbacks are function names passed by convention as the last argument in a
function call, and are called when the function’s content is finished (see listing 1).
This paradigm mandates the first argument of a function call to be an error and if
it is detected, the callback exits and the error is thrown. Because we were new to
JavaScript, callbacks were not utilized or utilized improperly. Callbacks also allow
for the propagation of errors and the paradigm of error-first functions. Instead, the
async module was used to imitate a series chain of callbacks for synchronous function
calls. The async module has nice features including readability and ease of use. As
long as the function names are descriptive enough to give a broad understanding of
what happens inside them, the async module is more friendly to read. The callbacks
from each function are gathered in the final anonymous function. This creates easily
debugged code (see listing 2).

1 function callbackExample(arg1 , arg2 , callback) {

2 // return to callback function instead of caller

3 callback(arg1 + arg2);

4 }

Listing 1: Callback Example

1 async.series ([

8

2 function(callback){

3 retrieveToken(callback);

4 },

5 function(callback){

6 tokenHandler(callback);

7 },

8 function(callback){

9 updateUsername(require(’electron ’).remote.getGlobal(’username

’).name , callback);

10 },

11 function(callback){

12 updatePlatform ();

13 }

14], function(err , results) {

15 // optional callback function goes here

16 if (err) console.log(err);

17 else console.log(results);

18 });

Listing 2: Async Module Example

There were complications in the implementation of the async module when re-
quests to the server were made. JavaScript views these get requests as completed as
soon as they are sent instead of when data is received, causing issues with exactly
when the default callbacks are run. To mitigate this problem, the setTimeout()

function was used to give the program a delay to wait for this information to get back
from the server, but because it is not consistent between runs, periods of heavy server
load cause errors. If the callback could be called upon receiving the data instead of
automatically at the end of the function, we believe this problem could be eliminated.

The figure below is the process flow for the launcher, it shows the process the
launcher takes when the user runs the desktop Transform application. The main
screen has several path options, making the flow non-linear.

9

Figure 3: DI Launcher Work Flow

10

5 Decisions

5.1 Electron

The Electron framework forms the backbone of the application. It is a modified
version of the Chromium browser that provides an easy format to make desktop
applications that use HTML/CSS/JavaScript, but don’t look like they are web-based.
The client requested this platform for its portability, JavaScript’s easy communication
with online resources, ease of use, and overall look and feel.

5.2 HTML/CSS/JavaScript

These tools are required by the Electron framework. They are old and reliable.
HTML adds elements to the application, CSS formats them and JavaScript gives
them functionality.

5.3 Node.js

Electron provides use of the Node.js library, both on the ‘front’ end and the ‘back’
end. This means that you can use the library on the HTML side of the application.
This increases functionality and removes security features as they aren’t necessary
when building a GUI.

5.4 RSS News Feed

The client requested a news feed on the application that would allow DrillingInfo
to advertise through the launcher and get news about Transform. The RSS/XML
format is easy to view and implement.

5.5 Login Screen Format

When initially designing the login screen, we decided to recycle the login screen from
info.drillinginfo.com/login, this would both ensure that they would keep cohesion in
their product design and save much needed time designing the page.

11

6 Results

The goal of this project was to create a launcher for DrillingInfo’s Transform software
in order to keep users from avoiding updating and using the software without having
the proper entitlements, while still looking like a desktop app. Thus, much of our
testing is based on user experience and usability. The client’s design outlined a
program with large buttons and section headers to create an easy to use interface.
We found this design to be appropriate for our implementation. On a performance
level, our launcher is smooth but takes about three seconds to load in it’s entirety.
This can occasionally feel slow, but we believe that the transition time is no longer
than an average load time on a desktop app. In the future we would add a version
selection option, this would allow the Transform development team to deploy special
versions of the software to clients that need a feature that isn’t offered in the normal
Transform software. Login entitlements are going to be handled by the client, due to
security concerns and the lack of time to complete this task. We hoped to have the
tool section of the launcher launch other applications, but due to technical concerns,
they currently link to the DrillingInfo website to show how they are populated by
a JSON object. In the future, DrillingInfo hopes to use the launcher with other
applications offered by DrillingInfo.

6.1 Lessons Learned

• JavaScript is asynchronous, so our processes all ran out of order, which was a
huge block in our programming. Using synchronous processes was essential for
returning the correct information at the correct time.

• Electron runs in two separate processes, main.js and renderer.js, where main
sets up the window and renderer contains most of the working code and logic.
This allows one process (similar to a tab in Chromium) to fail without affecting
the others.

• JavaScript doesn’t run as expected because it decides to run in the order it
thinks is the most efficient.

• A scrum tool, like Pivotal Tracker is helpful for keeping tabs on where the
project is and what needs to be implemented to achieve a workable product.

12

List of Figures

1 Log In Screen . 6
2 Main Screen . 7
3 DI Launcher Work Flow . 10

13

