

ServiceSearch

Garrett Quintero, Emily Greiman,
 Chamal Kayssar, Clara Tran

CSM Bridgman

15 June 2017

Table of Contents
Table of Contents 2

1 Introduction 5
1.1 Client Description 5
1.2 Product Vision 5

2 Requirements 6
2.1 Functional 6

2.1.1 Website 6
2.1.2 Users 6
2.1.3 Database 7
2.1.4 Google OAuth 7
2.1.5 Server 7

2.2 Non-Functional 7

3 System Architecture 9
3.1 Front-End 9

3.1.1 Events 9
3.1.2 MyEvents 9
3.1.3 Search 9
3.1.4 Admin 9

3.2 BackEnd 9
3.2.1 Database 9
3.2.2 PHP 10

4 Technical Design 11
4.1 Event Management 11

4.1.1 Creation 11
4.1.2 Read 11
4.1.3 Update 11
4.1.4 Deletion 11

4.2 Database 11
4.2.1 Tables 12
4.2.2 Interface 12

4.3 Access Control 12
4.3.1 OAuth Description 12
4.3.2 Credentials 12
4.3.3 User Interface 13

Technical References 13

2

5 Decisions 14
5.1 Front-end 14
5.2 Back-end 14
5.4 Security 15
5.5 Database vs File System 15

6 Results 16
6.1 Unimplemented Features 16

6.1.1 Emails 16
6.1.2 Event Completion Status 16
6.1.3 Admin Features 16

6.2 Testing 16
6.2.1 16
6.2.2 16
6.3.1 17
6.3.2 17
6.3.3 17
6.3.4 17

6.4 Lessons Learned 17
6.4.1 17
6.4.2 17

Appendices 18

A. Documentation 18
A.1 Pages 18

A.1.1 Home page 18
A.1.2 My Events 18
A.1.3 Events 19
A.1.4 Make Event 19
A.1.5 Individual Events 19
A.1.6 Contact Us / About 20
A.1.7 Administration 20
A.2.1 $_SESSION Variables 20
A.2.2 $_GLOBAL Variables 20
A.2.3 $_SERVER Variables 20

A.3 The Database and Tables 21
A.3.1 Events Table 21
A.3.2 Volunteers Table 21
A.3.3 Users Table 21

3

A.4 Files to know about 22
A.4.1 Footer and Header 22
A.4.2 Style.css 22
A.4.3 events.sql 22
A.4.4 glogin.php 22
A.4.5 confirmPage.php 22
A.4.6 editFunction.php 23
A.4.7 leavePage.php 23
A.4.8 Section.php 23
A.4.9 latest_events.php 23

A.5 Google oAUTH 23
A.5.1 How it works 23
A.5.2 Set it up 23

B. Development Environment 25

4

1 Introduction

1.1 Client Description
The Mines Philanthropy Council is a club here on campus that aims to promote a Mines-centered
culture of philanthropy. They play a role in communication with donors and provide a voice for
the students about fund allocations. On campus, they can be seen helping fundraisers, projects,
and assisting events, such as Philanthropy Days. The council encourages their peers to give back
to the community and have reached out to the CS department to help them develop a tool to
assist community service events.
The MPC is implementing a website called Service Search. Service Search is a social media-like
site that allows people and organizations to post community service events and find people to
help run the service. At Colorado School of Mines, there is a disconnect between people who are
looking for community service and organizations who need people to work at their service
events. The website will bridge the gap between the two parties and provide a service that allows
easy and quick connection to community service events and volunteers. Mines organizations,
Greek Life, or nearby communities can post events that are in need of volunteers. From there,
any Mines student will be able to look for an event and sign up for the community service.

1.2 Product Vision
The goal this summer field session was to deliver a fully functional Service Search site that could
be deployed at the end of the session. The product will allow for volunteers to look up
community events, sign up for events, and drop out of an event if need be. The organization
posting the event should be able to post details of what, where, when, and also how many
volunteers they need. We will be delivering the product as a website that can be set up on a
server. Since it is unknown whether CS majors will continue to monitor the site afterwards,
extensive documentation was provided to help hand the project off so that it may be used,
expanded, and monitored by Mines students long after we graduate.

5

2 Requirements

2.1 Functional
The website itself will have three types of users: clients, volunteers, and admins. Clients will post
events that volunteers will sign up for. Administrators will be able to keep the health of the site
by being able to see some statistics, remove events, remove users, sign-up a user for an event, or
drop them from an event. All information that pertains to the event will be stored in a table on a
database for the site to access and display dynamically.

2.1.1 Website
● Navigation Bar

○ The navigation bar holds the site together, allowing the flow from one part of the
website to the next. This bar lies on every page except the admin pages. It
provides a quick link back to the home page and offers the option to either login
or logout. It displays the options to see the events, about page, and the events the
user is a part of. If the signed in user happens to be an admin, then there is an
option to go to the admin pages. Lastly, the option to search for events resides in
the navigation bar.

● Home Page
○ The home page provides all information that one would expect a home page to

have. It links to the other parts of the site and displays a small list of recently
created events. For aesthetic reasons, a slideshow of Mines was added to the top.

● Events Page
○ After some text has been entered into the search field, the search will look

through the database for similar event name and tags.
○ No event that has passed will appear.
○ The user will be able to click on an event and will be brought to the event's page.
○ The page will have a restricted view to those who are not logged in. The

non-logged in view will not allow a user to create an event nor sign up for one.
○ Side column displays the date and name of 10 events that were recently posted

● The community service event page
○ Non-logged in users cannot volunteer for the event.
○ The page displayed is blank in reality and fills in depending on event id. The page

is dynamic and displays information pulled from the database.
● MyEvent Page

○ The page will display the title and date-time of all events that the logged-in user
has signed up for as well as created.

2.1.2 Users
● Clients

○ The organizations will be able to submit a service event that specify the number
of volunteers needed.

6

○ They will be able to post where and when the event is, and what will be expected
of the volunteers.

○ They should also be allowed to upload a logo with size restrictions.
● Volunteers

○ Will be able to sign up for an event.
○ Can back out of an event if need be.

● Administrators
○ Can keep track of stats of the site
○ Can register a Client or volunteer to an event.

2.1.3 Database
The database will hold information of all clients, volunteers, and events. This information is
broken up into 3 tables. The first table is called events and it holds information for the event id,
creator id, owner, event title, description, tags, picture location, start and end time, location,
email, timestamp, and volunteers signed and needed for the project. The events table is updated
every time an event is added or edited. The second table is named users, it holds the Google
account id, the user's name, the user's email, and whether a user is admin or not. Users is added
to when a new user logs into the site. Lastly, the volunteers table holds event id and user id. The
table is edited every time someone signs on to an event or signs off an event.

2.1.4 Google OAuth
The google login API was implemented to verify users for events. The button leads the user to
the google login and from there Google verifies the user and stores all the sensitive information
for us. Google OAuth only returns names, emails, and whether it is a verified account.

2.1.5 Server
The project was developed on an Apache server. The server is fairly simple and widespread, as
such it is easy to port from Apache to a different kind of server if need be. This relative
simplicity will make handing off the website easy to our client easier.

2.2 Non-Functional
The program must be easily extendable. The life cycle of the product may go beyond our team's
time here at Mines. As such the program will be written in HTML5, CSS, and PHP as these are
fairly common languages. The program was developed using WAMP given all that we needed to
use was bundled up in this easy to use package.
The website itself must show polish. For the life cycle of the product, looks and accessibility is a
must. The user must easily find projects and post community service opportunities. It must look
like a well developed website.
The web service itself is easily accessible and easy to navigate. Taking full advantage of the
internet, the service provides users with the information they need to connect to the community.
As such the site focuses a lot on UX design and tries to be appeasing to the eye. The service
connects volunteers with community service organizers in a convenient way. The success of this

7

product relies on being a more streamlined process of organizing an event and looking for an
event. The design of the site reflects this idea as users can easily find events and sign up for them
as well.

8

3 System Architecture

3.1 Front-End
The website is linked together by the navigation bar located at the
top of the page. The connections are laid out in Figure 3.1.1 where
each page can connect back to the Home page as well as to one
another. User can also login or logout on any page.

3.1.1 Events
Events page displays an overview of all events that are currently
available to volunteer for. Events Page also links to the Make
Event page as well as individual event pages.

3.1.2 MyEvents
MyEvents page will display all of the events the user has created
and volunteered for.

3.1.3 Search
Search Page goes hand-in-hand with Events page where events that link to the search term the
user inputs are displayed.

3.1.4 Admin

Admin page only links back to the Home page.

3.2 BackEnd

The website is hosted on a server to allow the user to access
it by the URL thesystem.mines.edu/ServiceSearch. The host
is a simple stack setup, shown in Figure 3.1.1 below, with
Apache, MySQL, PHP, running on a Windows computer.

3.2.1 Database

The project used a MySQL database. It holds three tables to
store website information: events, volunteers, and users
(shown in Figure 3.2.2). The website pulls different pieces of
information depending on the page. The database cuts down
the need for a complex file system. Most pages dynamically
display events according to query pulls. Empty fields are
filled with information from the events table.

9

3.2.2 PHP

PHP can pull information from the database through MySQL commands and is used to integrate
the back-end with the front-end. PHP is also used to store information to the database.

10

4 Technical Design
This project implements a website for Mines Philanthropy Council. The website provides a full
user interface to a MySQL database. User access control is integrated with Google OAuth,
allowing sign in from Google (implemented) or other (unimplemented) accounts.

4.1 Event Management

The website provides a full interface to the event database. All primary database interactions
(Creation, Reading, Updating, and Deletion) are implemented through web forms and webpages.
PHP is used to link the website to the MySQL database.

4.1.1 Creation

Event creation is handled via web form. As the user enters information for an event, any
incorrect submissions are thoroughly checked through Javascript. Javascript will send an alert,
stating what needs to be fixed. This includes: properly ordered start and end dates, image upload
is within reasonable size and with accepted image extension (e.g. jpg, jpeg, or png), and a proper
number of volunteers is inputted (i.e. greater than zero). Any HTML input type with a red star
appearing next to them are required and the system will warn the user when the form is not fully
filled out. A PHP script then parses the web form and creates a new entry in the database.

4.1.2 Read

Event information is displayed at two levels. An overview page shows basic information on
upcoming events as well as recently posted events. A details page displays detailed event
information. Both pages pull event information from the database.

4.1.3 Update

Appropriate users can edit events. The event update page is accessible from the event details
page. A webform similar to the event creation page is filled with current event information. The
user can change event fields as necessary. A PHP script updates the event’s row in the database.
User is able to cancel their edit simply by clicking outside the model or clicking on the ‘X’
button located at the top-right corner of the model.

4.1.4 Deletion

Appropriate users can delete events. The event deletion is accessible from the event details page.
A PHP script deletes the event’s row in the database.

4.2 Database

User Access Control ensures that only appropriate users can make important changes to events or
other information. This website integrates Open Authentication (OAuth), which provides a

11

common format for user credentials. This allows integration of sign up and sign in with other
web services. This project implements sign in with Google accounts.

4.2.1 Tables
As shown in Figure 4.2.1, the database contains 3 tables of interest: Events,
Users, and Volunteers. The Events and Users tables store information on
events and users, respectively. The Volunteers table stores (event foreign key,
user foreign key) pairs that link volunteers to the events they have signed up
for.

4.2.2 Interface
All user interactions with the database are through the website.

4.3 Access Control

User Access Control ensures that only appropriate users can make
important changes to events or other information. This website
integrates Open Authentication (OAuth), which provides a common
format for user credentials. This allows integration of sign up and
sign in with other web services. This project implements sign in with Google accounts.

4.3.1 OAuth Description
OAuth 2.0, Open Authentication, is an open source authentication service that allows
authentication with credentials from other trusted websites. From the OAuth community website:
“​OAuth 2.0 is the industry-standard protocol for authorization. … OAuth 2.0 focuses on client
developer simplicity while providing specific authorization flows for web applications, desktop
applications, mobile phones, and living room devices.” (OAuth 2.0)

OAuth simplifies both users and web administrators. Users can log in with credentials from other
trusted and respected websites, such as Google. Web Administrators are spared the hassle of
protecting user credentials.

OAuth uses public key cryptography to allow the transmission of irrefutable evidence of log in
through a third party service. The user credential is a message digitally signed by the third-party
that names the user and demonstrates sign in within a small time window.

4.3.2 Credentials
The web server requires several pieces of information from Google to process a log in request.
They include: client id, client secret, and redirect URI. All necessary variables are stored in the
beginning of glogin/glogin.php in the website directory. Client ID and Client Secret are how
Google identifies the website. These codes are obtained by creating an OAuth token in the
Administrators Google API Console, which can be accessed at:

12

https://console.developers.google.com/apis/credentials

https://console.developers.google.com/apis/credentials​ . The redirect URI tells Google where to
send the user after log in.

Figure 4.3.1: Action diagram for Google OAuth log in.

4.3.3 ​User Interface
User sign in through OAuth is done via a hyperlink available on all pages.

Technical References
OAuth 2.0 Community Authors (OAuth 2.0) “OAuth 2.0”​ ​https://oauth.net/2/​ Retrieved:
6/17/2017

13

https://oauth.net/2/
https://console.developers.google.com/apis/credentials
https://oauth.net/2/

5 Decisions

5.1 Front-end
When it came to designing the pages that the clients would see, we used HTML, CSS, and
JavaScript.There are a lot of resources for each and have proven to be reliable. All three can
work together on a single page and offer flexibility in design and aesthetic choices. HTML offers
the basic building blocks of the page while CSS creates a pleasant looking site that is user
friendly. Finally JavaScript offers functionality that does not directly affect the server side of the
website. HTML, CSS, and JavaScript are relatively easy languages to pick and implement. Given
the team's lack of experience designing web applications, these three languages helped the
process by being simple and well documented on the web.

For CSS in particular, the W3 and Bootstrap framework was used to create the look and style of
the web pages. Instead of building everything from scratch, it was much simpler to implement
what was included in the already existing frameworks. Once again our limited knowledge on
CSS made this a must have in the end.

5.2 Back-end
PHP was used to handle the server side of the site. When looking into how to talk to the server
ASP.NET was also considered, but ultimately PHP was what the team needed. PHP has been
around for years and as a result is heavily documented. Everything the team was about to do had
already been done at least once and documented on the web. The website did not require a lot of
fancy features and PHP is a simple approach that the team needed. PHP comes together with
HTML and CSS rather easily making it a good choice when integrating the front-end with the
back-end. Finally, PHP was fairly simple to setup and the development environment was able to
run for all team members.

Since we decided to use a database we needed a database management system. The team worked
with MySQL. Once again, limited knowledge of making a website lead us to choose this over
others. One teammate was familiar with MySQL and it made sense to use his knowledge with
the program. MySQL also offers everything we needed. It allowed for data to be stored in tables
and it allowed the access and manipulation of the data. Everything we needed to do with
databases could be done with MySQL.

The team developed using WAMP mostly due to convenience and since we had decided at the
beginning that we would us PHP and MySql. The development environment WAMP setup gave
the team an Apache server to work with. Since Apache is an open source cross-platform server
the team decided to use it. The work that is being done using the server should have no problem
being moved to another server in the future.

14

5.3 Google Authentication
Our client requested for only users who are logged in to create or sign up for an event. It was
decided that we would take advantage of the Google authentication. Since this system is fully
functional and does not require us to directly handle the usernames and passwords the team
decided that this would be the best approach. The only piece of information we handle with the
Google authentication is the user's name and email. This allows for us to focus on making sure
that the site is fully accessible to everyone and acts more like a way to connect. The feature to
sign up and make event requires for logged in users more as a precaution to prevent fake events
and volunteers.

5.4 Security
The web application is much like a social network site in which only registered members should
be able to make events or to sign up for them. Instead of developing a whole database for
passwords the team took advantage of the Google authentication to handle the passwords and
rely on their security with users' passwords.

To avoid malicious users precautions were made in the code to prevent SQL injection. These
precautions include the prevention of putting in SQL statements into the text field. This also lead
to the decision that the search will come with pre-made tags as to prevent any injection to begin
with. This also simplifies the search event feature and the team will be able to focus more time
on other parts of the site. In the HTML forms there is a bit of encryption being used to send the
information to the next page.

5.5 Database vs File System
The website will have to hold a lot of pages for community service events. However, all the
pages will have the same text fields. As a result the team has decided to hold all the information
in a database and display the information with a dynamic page view. Since we have a constant
look to the events there is no reason to take up space by making each individual event page. With
all the information of the even put on a database it allows for other parts of the site to access this
information and display it in a dynamic view as well. Since all our data all has a similar structure
to it, it makes sense to take advantage of a database. The team makes use of the file system to
store the template pages of the database constructed pages. The one piece of data we decided not
to place in the database was images for the event. This decision was made based on the fact that
storing images on a database is a challenge. It was decided that it was more efficient to store the
image in the file system and keep a directory to the image in the database.

15

6 Results

6.1 Unimplemented Features

6.1.1 Emails
While working on our project, we ran into problems with finding a home for the website.
Since the website would require a server to run on, we weren’t able to set up an email service for
sending out notifications to volunteers and organizers about the events.
Email reminders were not implemented. The primary reason being that our client set it as a
lower priority than several other features and we weren’t able to dedicate enough time to
developing the needed resources. The email notifications would also require another server
within the server we are hosting the website on. Since we were having difficulties setting up the
host server, we were unable to set this server up as well.

6.1.2 Event Completion Status
In their requirements document, our client asked for the ability for hosts to be able to “rate” the
people that signed up to volunteer at their event. We wound up finding this to be a lower priority
that we simply didn’t have time for. Since we’ve been learning how to use our technologies
while we’ve been using them, we weren’t able to have as much time to dedicate to all of the
capabilities that our client originally wanted.
All of the administrator roles are still being developed. Some of the statistics are in place, but
many of the management features are still being finished.

6.1.3 Admin Features
The admin pages do not hold all of the functionalities requested. The admin can look at some
statistics. They cannot however delete an event or remove a user from the site.

6.2 Testing

6.2.1
Our main method of testing was simply coding the website, then running a trial to see if it was
handled properly. Any time a new feature was implemented, at least one member of the team
would play with it to make sure it worked as expected.

6.2.2
On Thursday June 15th, our clients were given the ability to play with our website and report any
problems that crop up. This beta testing stage allowed us to find bugs we could not see without
extensive use of the site. This also provided feedback on front end issues with text boxes,
buttons, and text fields.

16

6.3 Future Improvements

6.3.1
Improved administrative privileges: it would be good for our website to have more advanced
administrative powers, such as individual user statistics and event viewing statistics. Also allow
a delete function that does not totally remove the user or event from the site.

6.3.2
Email capabilities. Sending emails as reminders or as notifications.

6.3.3
The design of the website can be improved upon with more attention to detail. There are minor
changes with the header and footer that could improve the user interface.

6.3.4
Improved tags and search functions. Our tags aren’t very varied at the moment. It’d be nice to
expand them to the ability for users to enter any tags that they want.

6.4 Lessons Learned
Throughout this project, there are two major concepts that we kept running into and learning
from.

6.4.1
The first one was simplicity. The simpler method is typically the better method for creating the
functions and capabilities you need to create. For example, not hard-coding in some of the
features for pages.

6.4.2
The second was taking time to plan together. We would often form pairs based on what we were
going to code that day. Often, however, individually we would focus on one part of the code.
This lead to us planning our components on our own and having to redo them to fit together
later. We learned that planning with at least one other person helps to make sure that everything
is logical and works together (most of the time).

17

Appendices

A. Documentation

A.1 Pages

A.1.1 Home page
The homepage for
this website lives
within the ‘index.php’
file in the root
directory of the
webpage.

This page features the
events that were the
latest to be uploaded,
along with having a
navigation bar at the
top that leads to the
other functions of the
webpage. After using
the login button to
access Google’s
oAUTH system,
administrator users
will have access to an extra button reading ‘Administration’. This button will only be visible to
users marked as administrators within the ‘users’ table in the ‘events’ database. For information
on how to flag a user as an administrator, please see the “Users” section of this document.

Another navigation bar feature not shown in the image above is the ‘My Events’ button. When a
user is logged in, the button will appear and direct them to the ‘My Events’ page.

A.1.2 My Events
The ‘My Events’ page is designed to show users both what events they have created and what
events they have volunteered for. This is simply so that they are able to more easily manage all
of the events and information associated with them. From here, users can go to their events to
manage different aspects of them. The code for this page is located in the ‘events’ folder inside
of ‘MyEventsPage.php’.

18

A.1.3 Events
This page is both where the ‘Events’ button on the navigation bar and the search will lead. This
page generates a list of the most recently created events while also creating pages of events.
Events that have passed their specified “end time” will automatically be hidden from this page.
This page is designed as the “hub” for all of the events that users can see. The code for this page
is located in the ‘events’ folder inside of ‘eventPage.php’.

A.1.4 Make Event
This page is a simple form that adds an entry into the database to represent the event and its
details. The file for this page is called ‘make_event.php’ and passes its information to
‘event_making.php’ to get the job done. Both of these files are located in the ‘events’ folder.

A.1.5 Individual Events
Of all of the pages within this webpage, this may be the most unique. This page generates a
unique page tailored to the event id that is passed to it. The links inside of the ‘Events’ page will
automatically be filled in to point to the corred event id. Since the individual pages for the
events are dynamically created using the ‘TemplateEvent.php’ file inside of the ‘events’ folder,
we are able to save storage space on the hosting server by not amassing dozens of very similar
files about the events that are being contained. The exception to this rule is held within the
‘events/uploads’ folder. Images for specific events are held here, all named to reflect the event
they are associated with. Here is an example of the layout for an event:

19

A.1.6 Contact Us / About
This page contains information about the purpose of the website along with information on how
to get in touch with coordinators/execs for the Mines Philanthropy Council. Its data can be
found under ‘events’ in the ‘aboutUs.php’ file.

A.1.7 Administration
The administration panel is actually split up into two separate pages. The page you are taken to
when you click on the ‘Administration’ link takes you to the ‘Statistics’ page. Here you are able
to see some of the statistics about the website and its use. This file is located under the ‘admin’
folder in ‘stats.php’.

The second page is the ‘Volunteer Management’ page. This page contains a list of all of the
volunteers that are on the website. This page mainly consists of a large table with a list of
volunteers and the ability to add or remove them from an event. The file for this page is also in
the ‘admin’ folder and is called ‘volunteer_admin.php’.

A.2 Useful Variables

A.2.1 $_SESSION Variables
These variables are accessible to every page that is active. These variables are used to keep track
of things like if someone is logged in, who they are, and if they’re an administrator.
The special variables to keep track of are:
$_SESSION[‘login_user’]
$_SESSION[‘access_token’]
$_SESSION[‘email’]
$_SESSION[‘verified’]

A.2.2 $_GLOBAL Variables
All of our global variables help us when dealing with ‘section.php’ and ‘latestevents.php’. We
used the variables to coordinate the look and functionality of these pages.

A.2.3 $_SERVER Variables
These variables are especially important for coordinating proper URLs from different pages. In
several cases, you’ll be sent to the wrong web address if $_SERVER variables are not used.
Important variables to keep track of are:
$_SERVER[‘PHP_SELF’]
$_SERVER[‘REQUEST_METHOD’]
$_SERVER[‘SERVER_NAME’]

20

A.3 The Database and Tables
The database for this project is simply called ‘events’. It has been set up to hold all of the
information about the various events submitted to the website, along with keeping track of users
and their volunteer sign ups. All of the details are broken up into the following three tables.

A.3.1 Events Table
The ‘events’ table contains all of the basic information on an event. Most of the fields should be
rather self-explanatory, so here are the ones that may need explanation.

The ‘Id’ column is a self-incrementing column that assigns a unique numerical id to each event
submitted to the website database.

The ‘icon’ column contains the path to the image that was uploaded by the user. The website
interprets the text here to use the correct image.

The ‘host’ and ‘creator_id’ columns can be thought of as very similar, the main difference being
that the ‘creator_id’ is automatically set to the id of the user currently logged in. The ‘host’
category is able to be set by the user for different circumstances such as they are creating an
event for an organization.

A.3.2 Volunteers Table
The ‘volunteers’ table is a very simple table. It is
used to keep track of who has signed up for each
event as a volunteer by creating an entry that is
made of up their ‘user_id’ and the ‘event_id’ for the
event they signed up for.

A.3.3 Users Table
The ‘users’ table contains all of the information we
collect about users. The unique columns to be
aware of in this table are the ‘id’ column, which
keeps track of the unique id that we are given by

21

Google, and the ‘is_admin’ column, which we use to indicate if a user has access to the admin
pages and privileges of the website.

A.4 Files to know about

A.4.1 Footer and Header
header.php includes the design layout of the Colorado School of Mines icon and login button that
is located at the top of the page. footer.php has the layout of the blue block of credentials located
at the bottom of the page.

A.4.2 Style.css
Style.css is the file that contains all of the common design aspects shared between pages. If
there is a recurring theme on the website, its styling is more than likely in here.

A.4.3 events.sql
events.sql is the file that contains a copy of the database for this webpage. If you are starting up
the website for the first time, then you’ll need to import this file into a database named ‘events’.

A.4.4 glogin.php
glogin.php is the file that helps to coordinate the process to log into the website. The main
aspect of this file to keep in mind is the redirect url. These will more than likely need to be
adapted for whatever server is hosting the website.

A.4.5 confirmPage.php
This page deals with the server update for when a volunteer signs up for an event.
deleteEvent.php
This is the page that is run after the user clicks delete event. It removes the user from
editButton.php
This is the code that affects the edit button. When the button is clicked by the user, they are taken
to to this file.

22

A.4.6 editFunction.php
Once the user submits the changes from the editButton.php it is sent here. The server deals with
all the changes and updates them accordingly.

A.4.7 leavePage.php
This page deals with the server update when a volunteer withdraws from an event.

A.4.8 Section.php
For the sake of the code on the eventPage.php, the code for displaying each event was placed
into the section.php. This file is called for every event on the event page and filled in
dynamically.

A.4.9 latest_events.php
The homepage holds dynamic display much similar to Section.php on eventPage.php.

A.5 Google oAUTH
User Access Control ensures that only appropriate users can make important changes to events or
other information. This website integrates Open Authentication (OAuth), which provides a
common format for user credentials. This allows integration of sign up and sign in with other
web services. This project implements sign in with Google accounts.

A.5.1 How it works
OAuth 2.0, Open Authentication, is an open source authentication service that allows
authentication with credentials from other trusted websites. From the OAuth community website:
“​OAuth 2.0 is the industry-standard protocol for authorization. … OAuth 2.0 focuses on client
developer simplicity while providing specific authorization flows for web applications, desktop
applications, mobile phones, and living room devices.” (OAuth 2.0)
OAuth simplifies both users and web administrators. Users can log in with credentials from other
trusted and respected websites, such as Google. Web Administrators are spared the hassle of
protecting user credentials.
OAuth uses public key cryptography to allow the transmission of irrefutable evidence of log in
through a third party service. The user credential is a message digitally signed by the third-party
that names the user and demonstrates sign in within a small time window.

A.5.2 Set it up
The web server requires several pieces of information from Google to process a log in request.
They include: client id, client secret, and redirect URI. All necessary variables are stored in the
beginning of glogin/glogin.php in the website directory. Client ID and Client Secret are how
Google identifies the website. These codes are obtained by creating an OAuth token in the
Administrators Google API Console.

23

B. Development Environment
The team used WAMP for development. The package contained all that was needed for the team
to work with including Apache and PHP. The team mostly used MyPHPadmin to directly make
the database and the team used uniform tables for consistency. All code editing software was
handled on either Brackets or Microsoft Expression Web 4. Code was submitted to GitHub to
keep up to date with every code change.

When it was time for our clients to begin testing the website to make sure it met their needs, the
server was setup to accommodate two websites. This way, anyone using the ServiceSearch main
website would have a consistent experience while we used the ServiceSearch-Development
website to update, break, and fix features and bugs.

Our development team is continuing the effort to find a more “permanent” hosting solution for
our client, seeing as the current hosting platform is a student’s personal computer.

24

