
Ecocion
Facility Management System
Alex Anderson
Niles Hacking
Ryan Shipp
June 16, 2015



1

Table of Contents

 1. Introduction ………………………………………………………………………………… 2

 1.1. Client Description

 1.2. Product Vision

 2. Requirements ………………………………………………………………………………. 2

 2.1. Functional Requirements

 2.2. Non-functional Requirements

 3. System Architecture ……………………………………………………………………….. 4

 3.1. Overview

 3.2. Presentation Layer

 3.3. Business Logic and Data Access Layers

 3.4. Data Source Layer

 4. Technical Design …………………………………………………………………………… 6

 5. Design and Implementation Decisions …………………………………………………….. 8

 6. Lessons Learned …………………………………………………………………………… 9

 7. Results ……………………………………………………………………………………… 10

 7.1. Overview

 7.2. Testing

 7.3. Features We Did Not Have Time to Implement

Appendices …………………………………………………………………………………….. 12

Appendix A: Testing

Appendix B: Development Environment Description

Appendix C: Further Reading



2

1. Introduction

1.1 Client Description

Ecocion is a company that serves to help companies comply with environmental, health, and safety 

regulations. To do this, Ecocion developed a software package called ACTS. ACTS stands for Asset 

and Compliance Tracking System. Originally this program was implemented as a desktop application 

where one could enter all of their company’s information including facilities, areas, equipment, 

workers, etc. ACTS comes with many rules and regulations pre-installed in the database and the ability 

to add new regulations as needed. Tasks can be put into the system to help users comply with the 

regulations. ACTS will notify the user of their progress towards these tasks put into the system through 

e-mail and from within the app.

Ecocion is currently in the process of expanding and re-implementing ACTS as a web application 

called ACTS O&G (Asset and Compliance Tracking System: Oil and Gas). This new version is largely 

the same software operating on a new platform; however, some small improvements are being made to 

the system including a more flexible design and the ability to directly stream data from a piece of 

equipment into the system. 

1.2 Product Vision

For our field Session project, we assisted Ecocion in moving ACTS Classic onto the web in the form of

ACTS Oil and Gas (O&G). Specifically, we worked on the facilities page. The facilities page is where 

all of the information regarding facilities is put into the database. This information includes the facility 

name, staff, location, associations with other facilities, and other general information. We implemented 

all of these tabs in the same manner as the existing O&G pages.

2. Requirements

The page we made needed to be able to organize a company’s facility data and make it easy to access 

and update. It should contain a series of tabs (Address, People, Phone, Regulations, Projects, etc.), each

with various fields displaying information from the client’s database. We implemented a complete web 

application as a series of layers, from the TypeScript presentation layer to the C# business logic and 

data access layers. Our project was to be as close in functionality to ACTS classic (as shown in figure 1

below) as possible.



3

Figure 1: The Details tab on the Facilities page of ACTS Classic.

2.1 Functional Requirements

The functional requirements of our project are:

• Include tabs for: details, attributes, addresses, agencies, agency accounts, email, facilities, 

locations, people, phones, correspondence, schedules, regulations, projects, and files.

• Include a grid on each tab's page as required. This grid is similar in style to an Excel 

spreadsheet, and presents data from the database.

• Allow basic CRUD (create, read, update, and delete) operations on the database tables.

• Make sure the application is functionally and visually similar to the desktop app.

2.2 Non-functional Requirements

The non-functional, or technical, requirements of our project are:

• Use Ecocion's APIs (including TypeScript and Entity Framework APIs).

• Use C# for the data access layer and business logic layer, which will share the responsibility of 

interacting with the database. 

• Our project will have a presentation layer with all of the tabs and text fields. This serves as the 

user interface for this project. It must be written in TypeScript.



4

3. System Architecture

3.1 Overview

Our project is a web application, and can be broken down into components in a few different ways. We 

will focus on the “layer” abstraction introduced earlier in the Requirements section (figure 2). We can 

split the application into four main layers: the presentation, business logic, data access, and data source 

layers. The presentation layer is the user interface (UI),

which delegates CRUD (create, read, update, delete)

operations to the layers below. Our presentation layer will be

written in TypeScript. The next two layers, the business logic

layer and the data access layer, will share the responsibility

of moving information back and forth between the database

below and the presentation layer above. The business logic

layer will be written in C#, with LINQ queries and Microsoft

Entity Framework serving as the data access layer. The final

layer is our Oracle database, which stores information and is

able to serve it up to the data access layer as requested. These

layers are shown in Figure 2.

3.2 Presentation Layer

The UI of our web application is written in HTML,

TypeScript, JavaScript, and CSS. Since the application

must integrate into the rest of Ecocion’s system, we used

their API to automatically generate HTML pages with the

correct CSS and JavaScript styling, allowing us to focus

solely on the TypeScript portion that defined the main UI

elements on the page, and how they interact with the

business logic layer’s web API. 

3.3 Business Logic and Data Access Layers

The majority of our time on this project was spent in the business logic and data access layers. This is 

where all the database interaction is done, broken up into what we called “reads,” “saves,” and 

Figure 2: A diagram showing the layers of 
our web application. This diagram shows 
the traditional layers of a webpage, with 
specific details about each layer in 
relation to our project. 



5

“deletes.” For each text field or dropdown in the UI, we created a method in the Facilities “controller,” 

the part of the web application that decides what to do when the browser requests a certain API 

endpoint. For example, when the user opens the “Details” tab on the Facilities page, JavaScript running

in the browser might make an AJAX call for the “Facility Owner” dropdown that looks something like 

this:
GET /acts/api/facilities/FacilityOwner

The request gets routed through the web server to the application, which sends it to the Facilities 

controller, then looks for a “FacilityOwner” method in that controller. The FacilityOwner method sets 

up an object with a list of options for the dropdown, and the currently selected option’s position in the 

list, and sends it back as a JSON object to be rendered into the actual dropdown by JavaScript back in 

the browser. These “read” methods allow us to populate fields in the UI when the user opens an 

existing facility record. 

Saves and deletes are tied to their respective buttons in the UI. When the user clicks “Save” or 

“Delete,” an AJAX call is sent that ends up at the “SaveFacility” or “DeleteFacility” methods in the 

Facilities controller. The save method then calls individual functions, each of which saves a certain 

object (corresponding to one tab in the UI) from the facility record. This allows us to also include an 

auto-save feature in each tab, so when the user clicks off a certain UI element, the JavaScript can detect

this, and send another AJAX request to save just the information in the tab the user is working on. The 

delete method simply deletes the record from the Facility table, clearing up any referenced objects from

other tables along the way when appropriate.

3.4 Data Source Layer

The data source for this application is Ecocion’s Oracle database server. The schema for this database, 

which describes the layout of the tables and their columns, was written by the company’s founder for 

use with ACTS Classic. We had to become familiar with its layout during the course of our project 

because it played a large role in the way the business logic and data access layers had to be written. We 

learned a great deal about relational databases and how primary and foreign keys tie everything 

together. The Facilities model, which is the part of the database we worked with the most, is a 

collection of interrelated tables (figure 3).



6

4. Technical Design 

In order to make our project easier to code, we used LINQ queries rather than SQL queries. By using 

LINQ rather than SQL, we were able to write more maintainable and secure code at a faster rate than 

we would have if we were writing SQL. We also used Microsoft Entity Framework to allow us to use 

data models that represent database tables within our code, and this allowed us to use dot operations to 

Figure 3: Part of the Facilities model in the Oracle database, including
the FACILITY table itself.



7

access different parts of the database rather than pesky SQL joins. By using these technologies together,

queries made to the database became much shorter and more readable. Figure 4 below is a diagram 

outlining how an application communicates with a SQL server through LINQ. As shown in the 

diagram, the application uses LINQ queries that are then converted to SQL queries which are then 

given to the server.

Saving associations between two facilities was an interesting issue. Initially we just wanted to put an 

associated facility column into the existing facilities table, but many problems were found with this 

solution. One problem was that every facility would need to have some value for associations 

regardless of if it actually has an association. This value could just be set to null, but it would be easy 

for this to be accidentally changed creating a fake facility association. Another issue is that this 

structure would limit each facility to only having one association. A third issue is that there is no easy 

way to store any additional information about an association. This would either require even more 

columns added to the facilities table, or multiple different types of associated facility columns being 

added to the facilities table. 

A better solution to this problem was to add an entirely new table to the database for facility 

associations such as the one shown in Figure 5. This new table has two columns for the primary and 

secondary facility ID, as well as columns for comments and other information about why the facilities 

are associated. This solution has none of the problems that would have been introduced with our initial 

solution. Associations are not directly in the facilities table, so there is no one column that could create 

Figure 4: LINQ and SQL Diagram (from 
http://codesamplez.com/database/insert-update-
delete-linq-to-sql)



8

a fake association if it were changed. Facilities can have multiple associations by simply having two 

rows in the associations table with different secondary facility IDs. The associations table also provides

a place where additional information about an association can be stored without forcing every facility 

to have these columns. Similar tables are used in our project for associations between facilities and 

other things such as phone numbers, emails, and equipment. These tables allow new associations 

between existing objects to be made without changing any of the objects. 

5. Design and Implementation Decisions

Based on the UI text generated from our variable names, Ecocion’s existing conventions, and the web 

framework’s own conventions, we decided on naming conventions for all variables, database tables, 

and methods in our page. Methods are given descriptive names using CamelCase, variables with 

babyCamelCase, and references to database tables in ALL_CAPS. We also agreed on specific 

pluralization rules to keep everything consistent.

We decided to include name, ID, and owner fields in the search modal, so users can search by any of 

these pieces of information. Name was an obvious choice, and we found out that the short numeric ID 

was often easy enough to remember that people would use that to find the facility they were looking 

for, without having to scroll through several facilities with similar names. The owner field is also a 

major advantage, as it allows users to filter by the company that owns the specific facility they are 

searching for, perhaps if they have forgotten the name and ID.

Figure 5: Niles Co and Ryan Co are associated in that they share the same water. Looking at the 
facility associations table tells us this because both Niles Co’s and Ryan Co’s ID numbers 
appear on the same row along with the comment “share water”.



9

The “grid” component of some of the tabs needs to change based on the number of columns in the 

specific table. Based on the tables system used in the app, we found that the page was broken into 10 

units, regardless of window size. We then made individual size decisions for each column in the grid 

based on the average length of the data contained in that column, making sure the total size of the 

columns on a single tab was at least 10. We were able to optimize the sizing of these UI elements to 

make the best use of screen real estate, and not overly crowd the interface.

Several of the fields in our grids needed to contain multiple pieces of data. For example, a “name” cell 

might need to be structured as “LAST_NAME, FIRST_NAME MIDDLE_INITIAL.” (eg, “Doe, John 

H.”) While this is a relatively simple example, some of the other cells were a bit more complex. We 

made decisions for each of these on what information would be most useful to present to the user. 

“Regulations” was one of these more complex fields, which we ended up presenting as 

“REGULATION_NAME (REGULATION_TYPE, REGULATION_STATUS).” “Regulations” 

contained several other fields (comment, description, agency information…), but by looking at the 

information stored in each of these fields and thinking about the application from the user’s 

perspective, we were able to pick the fields that were used by all regulations, and contained information

that would help describe the regulation to the user in the context of the grid.

6. Lessons Learned

We learned several valuable lessons while working on this project:

• The way tasks are divided between team members makes a significant difference in the quality 

of work and the speed at which it is completed. If tasks are not divided equally, some team 

members are left waiting for the others to finish. If tasks are not divided intelligently, a team 

member might waste time by completing the same task that another team member has already 

completed. Communication and intelligent divisions are vital at the start of a task in order to 

maximize efficiency.



10

• Communication is key on a team task. If the team works silently on a task and only reports to 

each other when a task is completed, one team member might not have understood the task as 

well as the others and will have errors in their code that would not have been written if more 

communication would have occurred while working on the task. Communication is key to be 

sure that everyone is on the same page.

• Pair programming is extremely useful. Developers end up writing better code at a faster pace 

just by having another developer looking over their shoulder. This can be great for a developer 

that is less experienced as well; having a more experienced developer look over your shoulder 

can be a great way to learn and can make you feel more confident about your code.

• Don’t be afraid to ask questions. If developers are afraid to ask questions, massive amounts of 

time can be wasted trying to figure out a problem that could be solved in seconds by a more 

experienced developer. By asking plenty of questions, developers spend more time on difficult 

problems and less time on trivial ones, and their overall efficiency is increased tremendously.

7. Results

7.1 Overview

Overall, our project was a success. We finished on time and completed all of the features required by 

the client, along with a few extras. The page we created has all of the functionality of the original 

“ACTS Classic” facilities page, in a much cleaner and more accessible interface. It allows users to 

create, edit, and delete facilities, as well as search through and view existing facilities. Where Classic 

used simple dropdowns, we have autocomplete dropdowns that update dynamically via AJAX as the 

user types. All data loads and saves also go through AJAX calls to the endpoints we created using 

Ecocion’s existing RESTful API. All forms are validated and have clear error messages when the user 

enters invalid information or leaves a required field blank.

7.2 Testing

To test our project, we used a variety of different browsers including Microsoft Internet Explorer, 

Google Chrome, and Mozilla Firefox. We did not encounter any differences in the functionality of our 

page between these browsers. We also tested our project by creating, reading, updating, and deleting a 

variety of facilities. We tested whether facilities were actually being created, updated, and deleted from 



11

the database, and not just from our interface. We also made sure to test edge cases, such as entering 

data for required fields only, entering data for all fields, and leaving required fields blank to check form

validation. We found a number of bugs in our testing, and were able to fix all of them. 

Figure 6 below shows the completed Details tab of our project.

7.3 Features We Did Not Have Time to Implement

There were a few optional features that we did not have time to implement. One of these was adding 

custom latitude/longitude fields to the form, which could have used a special UI element that would 

have made it easier for users to enter these values. We left these as plain text fields, which still allowed 

users to enter valid data. We also could have dynamically added extra information to the “person” 

dropdown for the person records that contained the extra data. Instead, we left it just showing last and 

first name and middle initial. These features were low priorities for our client, so we made sure to focus

on more important features first.

Figure 6: The details tab of our ACTS O&G Facilities page.



12

Appendices

Appendix A: Testing

In order to test our project, we created a variety of facilities and made many updates to them. After 

creating/updating facilities, we would check the database entries for these facilities to ensure that they 

were properly created/updated on the database side. We also spent time deleting facilities and ensuring 

that they were properly deleted from the database. We also heavily tested the interface to ensure the 

proper fields or dropdowns were required before a facility would save and that the user would not be 

allowed to save entries before these were filled/selected. We also spent time testing edge cases by 

entering large values into various fields to ensure that the database would accept them successfully.

We also tested our project in a variety of browsers. The browsers we tested on were Microsoft Internet 

Explorer, Mozilla Firefox, and Google Chrome; together, these three browsers cover nearly 95% of 

internet users. Our application ran exactly the same in all of these browsers, which ensured that most 

users would not experience any problems or inconsistencies in the experience of our web application 

depending on the browser they chose.

Appendix B: Development Environment Description

The development environment we used for this project was end-to-end Microsoft. The computers we 

used ran Windows 8 and the IDE we used was Microsoft Visual Studio 2013. The version control we 

used was also from Microsoft and was integrated into Visual Studio. We primarily used Microsoft 

languages and frameworks to create our project as well, including TypeScript, C#, Microsoft Entity 

Framework and LINQ.

Appendix C: Further Reading

• For further reading on Microsoft Entity Framework

https://msdn.microsoft.com/en-us/data/ef.aspx

• For further reading on LINQ

https://msdn.microsoft.com/en-us/library/bb397926.aspx

• For further reading on Oracle Databases

https://www.oracle.com/database/index.html

https://msdn.microsoft.com/en-us/data/ef.aspx
https://www.oracle.com/database/index.html
https://msdn.microsoft.com/en-us/library/bb397926.aspx

