

DRACULA

CSM Turner

Connor Taylor, Trevor Worth

June 18th, 2015

1

Acknowledgments

Support for this work was provided by the National Science Foundation Award No.

CMMI-1304383 and CMMI-1234859. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

2

Table of Contents

Acknowledgments .. 1

Introduction .. 3

Requirements:.. 4

Functional Requirements: ... 4

Non-Functional Requirements: .. 4

System Architecture ... 5

Technical Design ... 6

The Optimization Algorithm .. 6

Basic Design Structure ..10

The Database ..11

The User Interface ...12

The Admin Interface ..12

Design & Implementation/Lessons Learned ..13

Results ..15

Appendix I ...16

Option 1 – Javascript ...17

Option 2 - Java Applet ...19

Option 3 - Desktop Application ..21

Appendix II ..23

3

Introduction

Dr. Cameron Turner is a Mechanical Engineering professor at the Colorado School of

Mines. Dr. Turner is part of a group of professors and graduate students working here at

Colorado School of Mines and at the Georgia Institute of Technology to allow engineers to more

easily use analogies in their designs. For the last few years they have been working on

developing the Design Repository and Analogy Computation via Unit-Language Analysis

(DRACULA) system, and have enlisted us to aid them in reinventing their previous user

interface and data storage frameworks.

The DRACULA project aims to allow users to specify parameters of a design they are

working on, and search through a database to find other designs that may contain elements that

are useful for their design. In order to do this, the project needs interfaces to both allow the

users to easily search through the database, and for the scientists on the project to manage the

database.

When we began, the project had an interface in C++ designed to allow the user to look

for designs and a working Excel database. However, the original software was difficult to use

and manage, which prevented the project from being used efficiently. Our goal was to create

graphical user interfaces for these purposes that are easy to use, create a web page to access

the interfaces, as well as update the current database to a format that is more suited for use.

4

Requirements:
The DRACULA system must allow users to simply relate problems in one engineering

environment to another using analogies, and must store a list of known analogies and their

graphical data points in a database which can be edited and maneuvered by someone with only

basic knowledge of the system. Specific requirements are:

Functional Requirements:

1. A database that efficiently stores data corresponding to the analogies

2. An interface for adding, deleting, and editing database entries

3. An interface for searching the database and displaying results to the user

4. Hyperlinks that are shown in the search interface are opened in a browser once clicked

5. The search results were originally displayed in a log files and in the final product must be

shown directly to the user.

6. Search results return a “good” answer on the first page

7. The program should use data from the database to compute the analogies

8. Database edits should be accepted by an administrator before being implemented

Non-Functional Requirements:

1. The program should be runnable in a web browser

2. The interfaces should be easy to use

3. The interfaces should be clean and contain no extraneous information

4. The Optimization function is modular, and can be changed or replaced without affecting

other code

5. The database must support an ever-growing list of data

6. Our system must be portable amongst most operating systems.

5

System Architecture
Figure 1 shows the overall structure of our design. We have two main interfaces, the

Database Management Interface and the Search Interface. Both of these interfaces are located

on one server and the user interacts with the interface through their browser. The Database

Management Interface serves to allow administrators to create, modify, and delete entries. We

query the database for the information it currently contains, and we then display this to the

administrator for modification. Once the administrator decides what they wish to do, whether it is

adding, editing, or deleting information, we send a new query to the mySQL database to make

this change.

Figure 1: System Architecture

 The Search Interface allows a user to provide some basic information on their design
and receive analogous designs that may help them with their project. There are two main parts
of doing a search. The Search Interface is where the user enters in their data and where the
data is displayed once the search is finished. The Optimization Algorithm serves to do the
search through our database. Since the DRACULA project does not use a keyword search, the
searching through the database is more intensive. The basic structure of how a search works is
shown in Figure 2. This search requires 3 main interactions with our database in order to
determine the most relevant analogies.

6

Technical Design

The Optimization Algorithm

 The DRACULA system is based on an algorithm developed by Dr. Turner’s team

designed to relate different structures in both engineering and in nature by their design rather

than by keyword. What this means is that the program relates data based on the units (mass,

length, time, electric charge etc) of parameter being processed, referred to as “Engineering

Parameters” and bond graph representations of the functions which transform these materials,

known as “Critical Functions,” to score different designs, referred to as “Analogies,” which are

stored in the database and rank them on their relevance to a user-entered query. Each Analogy

has the same general breakdown of data, and because of this we store each Analogy during the

search as an object. Analogies are specifically made up of a series of “Critical Pairs,” a

collection of more specific data stored in an order. Each Critical Pair has a variable number of

“Critical Flows,” each with its own input Flow, input Engineering Parameter, Critical Function,

output Flow, output Engineering Parameter and Relationship. A “Flow” is the material that

transfers the engineering parameter between Critical Flows. the “Relationship” field indicates

which flows follow that flow other than the next one in the list. A list of valid Engineering

Parameters, Critical Functions and Flows is included in figures 9-11 in the appendix, as well as

a visual example of an Analogy in figure 2.

7

Figure 2: Example Analogy Entry in Excel. Analogy outline in black, Critical

Pair in red, Critical Flow in blue and sample Critical Flow unit in green.

8

 To process this data the computer must construct what is referred to as a “Function

Chain,” which is made up of the units of each engineering parameter in succession, and is

stored as a two-dimensional integer array. To construct a function chain the algorithm iterates

through each Critical Flow in Critical Pair one. It then recursively goes through each Critical Pair

sequentially, comparing each Critical Flow to the previous flow and matching those which have

matching input/output flows.

To better explain, each Critical Pair can be thought of as a collection of dominoes, and

each Critical Flow as a single domino in that collection. Each collection is organized vertically,

so that the Critical Pair one collection is above Critical Pair two, and so on. The algorithm

compares the bottom part of each domino in Critical Pair one (the output Flow) with the top of

each domino in Critical Pair two (the input flow). If the two dominos match, the algorithm

continues on until it has found a match in every collection all the way down, and adds this one to

this list of function chains.

Once the algorithm has found every possible sequential permutation, it repeats this

process but organizes the collections based on Relationship instead of sequentially. For

example, if a Critical Flow in in Critical Pair one has Relationship “3,5” it will be compared first to

dominos in Critical Pair three and a Function Chain will be built, and then compared to dominos

in Critical Pair 5, building another set of Function Chains. These function chains will not

necessarily be as long as the ones built sequentially.

The process of going through the search in detailed below in Figure 3. In step 1, a user

initiates a search using an Engineering Parameter and one to three Critical Functions, for

example, a user would enter in Volumetric Flow for the Engineering Parameter and Convert and

Transfer for the Critical Functions. In Step 2, we retrieve information from our database related

to what the user entered. In our example we would translate Volumetric Flow to its units, which

are 03-1000000 representing that it is volume(𝑙𝑒𝑛𝑔𝑡ℎ3) per time(𝑠𝑒𝑐𝑜𝑛𝑑𝑠−1). We would translate

the Critical Functions to their bond graphs, which would be 00011 for Convert and 10100 for

Transfer. The bond graphs represent the different properties of the Critical Function, but also

exist for Engineering Parameter. These properties look at if the Function or Parameter is

Resistive, Capacitive, Inertial, a Transformer, and/or a Gyrator in that order. The bond graph

has a 1 for a property if the property is true, and 0 if it is false. Convert is both a Transformer

and a Gyrator while Transfer is Resistive and Inertial.

Once we have this data, we move to step 3. Here we look through all 114 Engineering

Parameters in our database and find the Parameters that are compatible with the bond graph of

the first Critical Function. Bond Graph compatibility is defined as sharing a value of one in at

least one category. In our example, Convert was our first critical function so we would look for a

Parameter that is a Transformer, a Gyrator, or both. After this, we move on to step 4 where we

see if the Parameters we found in step 3 have the same units as the Parameter that the user

entered. In our example we would be look at all the Parameters that are compatible with

Convert’s bond graph and that have the same units as Volumetric Flow. If we find any

Parameters that meet these restrictions we add the units to a vector that will later become the

function chain for the user’s data.

We then repeat essentially the same process if a second Critical Function exists. We

find all the Parameters whose bond graphs are compatible with the second Critical

Function(Transfer in our case) and move to step 5. In step 5, instead of looking for Parameters

9

that match the units of the user-entered Engineering parameter, we look at all the combinations

of two Engineering Parameters and sum up their units. We then compare this sum to see if it

matches the units of the user-entered Engineering parameter. For example, if we had two

parameter with units of 010000000(𝑙𝑒𝑛𝑔𝑡ℎ1) and 02-1000000(𝑙𝑒𝑛𝑔𝑡ℎ2 𝑎𝑛𝑑 𝑠𝑒𝑐𝑜𝑛𝑑𝑠−1) we would

have a match for Volumetric Flow. We then pair the units of these two Engineering Parameters

together and add the pair to the results vector. If we had a third critical function, we would move

to step 6, where we repeat the process, but instead of looking at combinations of two

Engineering Parameters, we look at combinations of three.

Once we have done this process for all the Critical Functions, we move to step 7. Here

the results vector is a Function Chain. If we found one Parameter in step 4 and one pair of

Parameters in step 5 for our example, the vector would have (03-1000000) for the first element

and (010000000, 02-1000000) for the second. This forms the function chain for the data our

user entered in. In step 8, we then make Function Chains for all of the Analogies in our

database, using the method that was described previously. We score each analogy based on

how similar its Function Chain is the to the Function Chain created from the user’s data in step

9. Once this is done we show the top scoring entries to the user.

Figure 3: Optimization Algorithm

10

Basic Design Structure

Figure 4 illustrates the general form of our search algorithm’s data flow and necessary
interactions with the database. There are three distinct interactions that our program must have
with the database. The current PHP version uses more than just these three interactions to
improve performance, but still follows the basic structure

The first interaction occurs when the optimization algorithm is started. We are given data
in a form that is design to make sense to the user. In order for us to transform this data into
something meaningful for the program, we need to query the database. We are given a
parameter id and up to three critical function ids from the user interface. We query the database
for the units corresponding to the parameter id, the bond graphs corresponding to the critical
function ids, and all of the parameter bond graphs. Using this data we construct function chains
based off the user-entered data and move to the next database interaction.

The second interaction occurs after the user function chains are built. We query our
database for the critical pairs of all of the analogies of the database. This interaction serves to
create a score for each analogy based on how relevant it is to the user. The query returns every
critical pair with the units for the input and output flows. We then process this data into a series
of function chains for each analogy. We can then check how closely the function chains match
the user function chains and score the analogy based off the match. Once every analogy has
received a score, we move onto the third interaction.
The third interaction serves to get data that would make sense to the user. Once we have a the

scores, we look at the entries with the highest score. The user specifies how many entries they

wish to see, and the top few entries, we query our database for the corresponding information in

the entry info table. This gives the user some details about what the analogy means and how it

could be used in their design. This information is then displayed for the user in our user

interface.

Figure 4: Basic design structure for the Search Interface

11

The Database

 The database stores all of the information relevant to storing Analogies (as “Entries”)

and their associated data. The general database schema is outlined in Figure 5.

Figure 5: Database Schema

Each entry is stored with its associated ID and information only critical to a user and not

the search algorithm, such as the name, description, etc. in the Entry Info table. Associated

Critical pair data is stored in the Critical pair table, where it is referenced by its Critical Pair ID

(CPID). Each Critical Pair has an ID that relates it back to the Entry Info table, a “Design For”

object which is displayed to the user and does not affect the search algorithm, but is associated

to each Critical Pair. Critical Flows are stored here implicitly, and are related to each other using

the Pair Number section, which indicates which pair (one, two, three etc) the Critical Flow is

related to. All other Critical Flow elements are also stored here as various ID’s which relate

them to entries in the Engineering Parameters, Flows and Bond Graph Type tables.

The Flows table stores a list of valid Flows for each Analogy. Bond Graph Type stores a

list of valid Critical Functions and their bond graphs. Engineering Parameters stores the list of

valid Engineering Parameters and their units, as well as an ID to associate each Engineering

Parameter with its bond graph stored in the parameter Bond Graph table.

The Users table holds information used to authenticate administrators when they log on

to edit the database using the PHP interface. This table stores the username, hashed password,

email, level and a passwordChanged boolean. The level is not currently relevant information,

but was included for potential future changes when users other than just administrators may be

allowed to log in. The passwordChanged boolean is checked upon login to force the user to

change their password when they log in the first time from the default password, and can be

used later by a system administrator to allow admins to change their password later on.

12

The User Interface

The user interface is built using both PHP and basic HTML. When a user visits the

search page, index.php, PHP code is run and generates the web pages relevant to the place

the user is in the search. On the initial page, users submit search information through and

HTML form by selecting an engineering parameter and one to three critical functions. These

options are retrieved from a list stored in the database, and represent the basic structure of an

engineering project. For example, a user might enter “energy” as their engineering parameter

and then select “regulate” and “transfer” as their critical functions, indicating that they are

searching for analogies which relate to the regulation and transfer of energy. These options

send the respective ID’s for their choices on to the next page.

Afterwards, optimizationAlgorithm.php takes these ID’s and matches them to unit data

for the engineering parameter and bond graph data for the critical functions and builds the user

choice function chain. The algorithm then pulls down all data from the Critical Pairs table and

assembles it into Function Chains as detailed above. The function chains are then compared to

the user entered chain, and a score is built. An array of Analogies is constructed after pulling

down all relevant user information from Entry Info for all Analogies whose score is above a

threshold (default is 0), and this array is then sorted by score and displayed to the user using

html tables. During the search, the user selects a maximum number of entries they want to see

on the next page. If less than that number are found with a score above 0, only that many

Analogies will be displayed. If more Analogies are found, but they have the same score, all will

be displayed. For example, if a user requests only 10 results to be displayed, but the 9th, 10th

and 11th Analogy all have the same score the page will display the top 11. If a user decides

they want to see even more entries, they may enter a new number of entries to display and hit

the “display more” button. This redirects them to displayMore.php and rather than redoing the

search, it sends the previously compiled display array. All entries up to the number requested by

the user will be displayed again in the same manner as before.

The Admin Interface

 An Administrator accesses the Admin Interface by going directly to the URL and staring

at login.html. They submit login information, loginHandler.php checks the information, and they

are redirected to editPage.php to begin making changes to the database. Administrators can

select using an html form whether they want to create, modify or delete entries, engineering

parameters, engineering parameter bond graphs, critical function bond graphs or flows. From

each of these options they are directed to createPage.php, modifyPage.php and

deletePage.php where relevant html forms are displayed for easy editing. These are handled in

createEntry.php, modifyEntry.php and deleteEntry.php, respectively.

13

Design & Implementation/Lessons Learned
We decided on a multiple-phase design scheme for our project, because of the many

features requested by the client. Our client was concerned with the efficiency of our search

algorithm, and that once many users started running the search, it would take a long time to do

all of the searches. Because of this concern, we looked into running our search algorithm on

client-side and having the database on the server side. This led us into doing a multiple phase

design.

We started work on the first phase of the design, creating features which are universal to

all overarching designs for this project. For this phase we created: a mySQL database that

served to improve organization and ease of storage for the data, an HTML/PHP based user

interfaces to allow users to search the database and admins to maintain it, and we rewrote the

search algorithm from C++ into PHP so that it may be used online rather than having to be

installed on a user’s computer. These features are necessary for the next phases of the project

and prepare the project to move to a client-side search algorithm. By implementing a PHP

based search interface, we allow the project to be functional while the client-side interface is

being worked on. The focus in this phase was on moving the database to a mySQL form as well

as the software to allow for the administration of the database. Completing this tier of the project

gives the client all of the basic features that they have requested and supports them for small-

to-medium scale use of the program, and sets the basis for further work later on.

 The second tier of work involves researching and providing documentation for the

project on potentially moving the search algorithm and other resources to the client’s computer,

with the intention of freeing up resources on the server for long-term growth. We looked into

possibilities such as writing the search GUI as Javascript or as a Java Applet during this phase

of the project. While this tier does not involve much actual coding or production of working

materials, it will represent a starting place for whichever group takes on the third tier, whether

that is our group, the project leads or another field session group down the line. Details of the 3

options that we looked at are provided in Appendix I.

The third tier of work will be actually moving the search interface to a client-side

language. This is outside the scope of what we will be able to accomplish during this field

session.

 We decided to use this multi-tier design to maximize the benefit for the client while still

allowing us to “complete” the project - that is, to allow us to accomplish the minimum

requirements for the project first without getting lost under the weight of potentially more

complicated and difficult-to-produce features in the beginning and producing nothing of value.

The goal for our project is to provide as much value to the client as possible, and we believe this

project structure allows us to do that.

 Beyond overall project structure, our first major design decision was which database

type to use. Several database services were considered, including Microsoft Access, MongoDB

and mySQL. We eventually settled on mySQL because it is open source, more or less standard

and has fairly comprehensive documentation. We determined that MongoDB was feasible, but

we did not see a clear reason to use MongoDB, so we decided to stay with the more traditional

SQL databases. We moved away from Access because the project previously attempted storing

the database in Access and failed, so we were unsure whether or not it would be the wisest

14

choice. Unlike Access, mySQL is generally standard on most servers and does not require a

licence to use.

Next, our clients requested that the user interface, currently in C++, be made so that it

could be opened uniformly in a web browser. For this reason, we decided to use PHP because

it would allow us to not only make a web-based GUI but also efficiently talk to and retrieve data

from the mySQL database. PHP also operates server-side, making it platform-independent for

our users, so long as they have a web browser to view the page. We opted to use PHP over

other server-side languages because it is accessible on most servers, and because of its many

similarities to languages we were already familiar with.

15

Results
 We were able to successfully port the database of the project from its current Excel form

to a mySQL form. To do this we had to understand and implement a system to structure the

data for access by the administrators, users, and the search program. This was important as

many aspects of the current database were done manually, and we were able to automate

much of this process which makes it much easier to use and maintain. The new form is intuitive

to use, directly accessible by our programs, and simplifies the data entry process, as well as

eliminates the need to translate the database into a text file so programs can access it. We

believe that this new database will make the work of our client easier and meets the

requirement that we should create a formal database.

 We also have created a web-based interface for managing the database. This allows an

administrator to create, edit, and delete the majority of entries in our database. We have tested

our software in Google Chrome and Internet Explorer, and has been completely functional so

far. This meets our client’s requirements that the software is portable to any system, and is

openable in a web browser. This software allows our client to easily access and manage the

database.

 We have translated the current search algorithm from C++ into PHP to allow it to be

accessed by a web-based interface. The PHP form allows the client to have a functional search

interface for the coming fall semester and sets up the project for future phases beyond the

current field session.

 We have also implemented a simple login process for the editing of the database. As

this will be accessible from the web, we wanted to make sure that only administrators can make

edits to the database. The login has only one tier of users in the current form. Our client had

asked for additional functionality with the login, such as requiring that multiple administrators

approve any modifications and deletions of entries. However, we did not have time to implement

this feature

 Much of the work has been focused on finding the correct design of the project. We

spent most of our time figuring out how the data should flow between interfaces, and what the

proper form of the database should be. Once this was done we were able to easily implement

the interfaces to interact with the database. Our finished product sets up the project for an

implementation of a client-side search interface in future phases.

16

Appendix I

DRACULA Phase Two

 Phase Two exists to outline and explore different client-side adaptations of the

DRACULA search algorithm. The goal is to dissect and understand different methods of moving

server-side processing to the client’s machine to reduce potential wait times due to server load.

In this appendix, we explore three options for a client side move: 1) JavaScript (figure 6), 2)

Java Applet (figure 7), and 3) a Desktop Application(figure 8). For each option, we will give an

overview of what the option entails, a description of how it works, a diagram of network

processes and a table of pros and cons discussing the general benefits and issues with each

option.

 Currently, the DRACULA search algorithm is done server-side, allowing users to connect

and search via the web without using their own computer resources. When a user navigates to

the web page, PHP scripts are run using information pulled down from the database to fill drop-

down boxes, which the user then uses to select the exact queries for their search. The search

algorithm then pulls each analogy entry from the database, scores it, ignores any entry with a

score below the threshold, and displays results ordered from highest to lowest score to the user.

This has the advantage of running the scripts “near” the database, in a way that minimizes the

impact of database queries over the network and allows for many versatile queries to be

launched in succession, but puts the effort of actually running the search algorithm on the server

processor.

 These designs follow the basic structure of our Search Interface, which can be found in

figure 2. By following this basic structure we minimize the amount of interactions with the

database, ensuring we do not spent too much time waiting for information to be sent from the

server to the client.

17

Option 1 – Javascript

Option 1 would implement our Search Interface, including both the user interface

and the optimization algorithm, in html/JavaScript. To do this, a JavaScript program

would be written and a link would be embedded in the html, to be run by the client when

they open the web page. This structure utilizes client resources to construct the

interface and run the search algorithm. Our queries to the database would then be done

by using an AJAX GET request which would send the necessary data to a PHP

program on the server. This would actually query the database. The query would return

an sqli_result which would then be translated into a JSON file and then sent back to the

search interface. The advantages and disadvantages of this structure are shown in

table 1.

18

 Figure 6: JavaScript Search Interface

Advantages Disadvantages

Executes the search algorithm on the
client’s computer

Forces large amounts of data to be
transferred over the web

Design is generally portable, most
browsers support JavaScript

Increased network requests take up time
saved by not running the search algorithm
on the server

 As the database grows in size, it
becomes less practical to send this
amount of data to the client

 Database functionality can not effectively
be used to improve the search algorithm

Table 1: Advantages and Disadvantages of the JavaScript Design

19

Option 2 - Java Applet

Option 2 implements the search interface as a Java Applet. To do this, a Java

program is written using the Applet framework and embedded in an html file, which is

opened and viewed by the user, but run on their computer. This will require both

browser support and for the client to have the correct version of Java installed on their

computer. By using a Java Applet we can directly connect to and query our database for

the necessary information. In order to set up this connection, the server must have the

Oracle Connection Manager installed. The advantages and disadvantages of this

structure are shown in table 2.

Figure 7: Java Applet Search Interface

20

Advantages Disadvantages

Executes the search algorithm using the
client’s computer resources

Requires the client to have the correct
version of Java

Directly connects to the database, rather
than using a php connector

Requires the browser that the client is
using to support Java Applets

Can be opened in a web browser Requires the server to have Oracle
Connection Manager installed

 Java Applets are losing support in the
industry, which could reduce compatibility

 Increased network requests take up time
saved by not running the search algorithm
on the server

 As the database grows in size, it
becomes less practical to send this
amount of data to the client

 Table 2: Advantages and Disadvantages of the Java Applet Design

21

Option 3 - Desktop Application

Option 3 creates the search interface as a desktop application. In order to run the

interface as a desktop application, a local copy of the database must be present on the client’s

computer. This would initially be installed along with the search interface and would check for

updates when the search is run. The user would need to access a web page to download the

installer for the program initially, and updates would need to be done whenever the local

database is outdated. There are no specific language requirements for the desktop application,

any language that can connect to a mySQL database would work. The advantages and

disadvantages of this structure are shown in table 3.

Figure 8: Desktop Application Search Interface

22

Advantages Disadvantages

Executes the search algorithm on the client’s
computer

Is platform dependent - different programs will
be needed for different operating systems.

Does not have a specific language
requirement

Database format cannot be universally
installed on all computers, different versions
of the database would be needed for different
operating systems
For example, on Windows Machines, mySQL
runs as a Windows service, a local database
such as SQLite would be butter, but then the
server would not have the same database
management system as the client

Search interface could be made more
efficient with SQL queries

Excess network traffic is created pinging the
server to check current database versions

 Downloading the initial installer creates a
large amount of network traffic.

 A full version of the database must be sent for
each change, rather than updating the current
one on each computer

 Users have direct access to the database,
and could easily modify it

 Future updates to operating systems could
cause the program to no longer be functional
on new machines

 Industry is moving away from these
frameworks and more toward cloud- and
server-based options

Table 3: Advantages and Disadvantages of the Desktop Application Design

23

Appendix II

Figure 9: A sample of
the 114 Engineering
Parameters of the
DRACULA Application

 Figure 10: Critical
Functions of the
DRACULA Application

Figure 11: Flows of the
DRACULA Application

