Head For Success

-~

A

Client: Joel Bach

Team Members:
Brandon Parrish
Isaac Valdez
Kyle DymowskKi
Alex Patel

CSCI 370
Summer 2015

The Client

Our client is Dr. Joel Bach, an Associate Professor at the Colorado School of Mines in
the Mechanical engineering department. Dr. Bach teaches courses related to
Biomechanics, Prosthetics and Implants engineering, biomedical instruments,
Dynamics, and more. In addition to teaching, Dr. Bach is also the Director of the Center
for Biomechanics and Rehabilitation Research at CSM, collaborating with researchers
at Assistive Technology Partners and the Orthopedic Biomechanics Lab at CU Denver.
Some of Dr. Bach’s projects in bioengineering include: instrumentation and sensor
development, biomedical modeling, and injury prevention and repair.

In cooperation with Dr. Bach, our team consulted with 2 individuals who provided
significant contribution to this project. Firstly, Dr Mounir Zok, Senior Sports Technologist
at the United States Olympic Committee; Dr. Zok leads the development of innovative
sports technology solutions for the US Olympic program and has experience in
wearable technology and a background in human-centered design. Secondly, Coach
Andy Sparks, Director of Track Programs at USA Cycling; Andy Sparks is an athlete
turned coach with over ten years of experience whose innovative methods have helped
his athletes earn 11 World Championship titles, 3 Olympic medals, 2 World records, and
20 National records.

Product Vision

Head for Success is an innovative solution designed to assist cyclists overcome
aerodynamic drag during training and racing. Using a gyro and accelerometer to
measure a cyclist's head position and movement, Head for Success is designed to
notify the athlete in real-time when his or her head is out of the ideal position. The
solution includes an Android application that communicates with Arduino
microcomputers via Bluetooth using a Lightblue Bean microcontroller. The mobile
application stores data for an athlete’s head position, graphing the coordinates of the
position over time, showing where an athlete’s head moved out of position. The
application also displays on an interactive chart the number of times an athlete’s head
moved of position during a workout. Using these tools, Head for Success aims to help
athletes minimize the number of times their head move out of position and ultimately
save crucial time that could be the difference between Gold and Silver.

Functional Requirements

1. Mobile application
a. Display multiple users
b. Set desired head position
c. Store the number of times an athlete’s head moved out of position
2. Arduino hardware
a. Measure relative angle of the head
i. Gyroscope in helmet
ii. Accelerometer on bike

b. Connect over wireless network

i. RF communication between gyroscope and accelerometer
ii. Bluetooth from central hub to Android device
c. Connect to mobile application through Bluetooth

d. Send haptic feedback to user

Non-functional Requirements

1. Arduino memory limits
a. Flash: 32k bytes
b. RAM: 2k bytes
2. Graph display for an athlete’s activity history
a. Using GraphView, a plotting library for Android
b. Display the number of times an athlete’s head moved out of position
during each activity
3. Threshold of angle and acceleration measurements
a. How far out of position an athlete needs to be to trigger the haptic driver

b. How long an athlete needs to be out of position to trigger the haptic driver

System Architecture

The construction of Head For Success includes many working parts. Below is a diagram
of the Head For Success architecture. Following the diagram is a description of each
part and how it interacts with other parts in the system.

Haptic Drivers

Ard{ I

Bluetooth
(Bean 1o Mobie Device)

Mobile Device

Lightblue Bean

Figure 1. Architecture Diagram

Arduino and Haptic Drivers

The task of getting hardware components consisting of the haptic drivers working with
the Arduino was taken on by Dr. Bach himself. The purpose of the haptic drivers is to
provide feedback to the rider when their head moves out of the set position. They
provide feedback by vibrating in distinction of where the athlete has moved out of

position. So moving too far upwards creates a different vibration pattern than moving
too far down.

Lightblue Bean

The Lightblue Bean is a microcontroller with several key pieces such as the
accelerometer and Bluetooth communication. Bluetooth communication between the
Bean and the mobile application is mainly the values taken from the accelerometer
readings. The readings are taken in the form of x, y, and z coordinate axis points. Using
the readings, the mobile application can set an athlete’s desired position as well as
record an activity’s position date with respect to time.

Bluetooth communication

Our project uses Bluetooth Low Energy (BLE) to send and receive data packets to and
from the Lightblue Bean and the mobile application. BLE is very useful in mobile
applications for its low energy use, saving the mobile device’s battery power.

SQLite database

A SQLite database is used to store athlete data. Although there are many database
management systems, SQLite is required to store locally to an android device.

Mobile Device

The mobile device has an architecture of its own. At a very high-level, the mobile
application communicates with the Bean to send and receive data. Below is a
description of each view and how each view transitions to another. The first view is a
splash screen with the team logo and the name of our project. The splash screen lasts
for a few seconds and then transitions into a listview of all the athletes that are locally
stored on the device.

HEAD FOR SUCCESS

Figure 2. Splash screen

4 91%[11:15AM

Head For Success =

Athlete1
Athlete2
Athlete3

Figure 3. List view

BRI 7.4 91%H 11:16 AM

< Athlete1 = +

Current Saved Head
Position:

179 179 179

180 180 180

SAVE HEAD POSITION

READ IN HEAD POSITION

Figure 4, Sed head posilion view

This page also allows you to add a new athlete into the database. When you select an
athlete, you are taken to a view containing the athlete’s currently set position, buttons
allowing you to set a new position, and a menu bar that has several options.

RIS 7l 91%H 11:03 AM

o
& ap Athlete Information

Delete Athlete

Current SJUVUU nIcawu
Position:

Figure 5. EditDelste settings

& New Session 2 B

-30
0
Range: —&8

Threshold: —&&

START

Frgure &, Mew activity view

& History <

28

2

Athlete History

VIEW DATE VIEW HISTORY

Figure 7. Activity history wiew

The first option is to select the far right item, which allows you to edit or delete the
current athlete’s name to/from the database. The middle item allows you to start a new
activity, where you set the range of feedback and threshold for how far out of position
you can go before losing feedback using slider bars, as well as set the amount of time
out of position you can go before triggering feedback. The third and final menu item
takes you to a view of your activity history. Every time you complete an activity, a new

entry is added to the history graph. You can choose a specific date or view your entire
history. Selecting the icon on the top right of the menu bar exports the graph, converts it
to a bitmap and saves locally on your device.

Technical Design

Figure 8. Sarah Hammer, Dotsie Bausch, and Jennie Reed. Team USA,
Women's Track Cycling Team Pursuit, USA vs GER. London 2012
Olympics.

GraphView

The activity history and session activity views in the mobile application utilize an open
source graph plotting library called GraphView. GraphView works well with Android to
programmatically create flexible, user-friendly graphs. It is as simple as creating a
series of data points and then adding the series to the graph. Formatting is easily done
by setting parameters such as axis labels, text, text size, colors, and more. GraphView

also works well with built-in Android components. The session activity view uses slider
bars to adjust the range and threshold limits. In Android the slider bars are called
seekbars, a good example of a seekbar is in Figure 5, on the new activity view. Below is
a fragment of code taken from the range seekbar that checks to see if the current value
of the range seek bar is greater than the value of the threshold seekbar.

public void onProgressChanged({SeekBar seekBar, int progress, boolean fromUser) {

if(progress > thresholdSeekBar.getProgress())
thresholdSeekBar.setProgress|progress);

The reason for this is because the threshold seekbar value must be equal to or larger
than the range seekbar. If the range seekbar value is larger than the threshold value,
then the threshold value is set to be the same as the range value.

Bluetooth Communication

Bluetooth connection uses GATT protocol to group attributes into a service. The service
provided by the Lightblue Bean and the open source APK from Little Robots gives
access to all of the functions that are inherited by the hardware of the LightBlue Bean,
i.g., temperature readings, accelerometer readings, and access to the LED’s on the
device.

The structure of the stream of data is defined by these attributes. None of which fit our
needs to send the values to the Android device.

Sending the data from the LightBlue Bean uses Arduino function Serial.print(); this
sends an ASCII encoded string containing a max of twenty-three bytes with a sixteen bit
handle. The handle is what defines the service and how the packets are processed into
useable data. Our team created custom handlers that are read in when the message is
received on the the Android device, the handle defines that our custom service is
requested and the String is parsed by a delimiter. The data is then used accordingly
throughout the program.

Design and Implementation Decisions

e Android Studio, after multiple attempts of trying to develop a cross platform
mobile application, we decided instead to focus development on Android for its
ease of use and support using Android Studio. This allowed us to write the
background code in java, an object-oriented language with useful containers and
libraries. Android Studio also allows the ability to test applications on nearly every
Android API level. Other options we pursued include Kivy, a cross-platform IDE
using python, and Xamarin, cross-platform IDE using C#

e Used SQLite as the database as this is the database that Android provides
documentation on and is easier to implement than other databases. Also has
cross platform code. SQLite is local database which is all that is currently needed
for this application.

e Used a stock Android theme and app icons to follow Google’s recommendations
on app development and made the app look considerably nicer without extra
hassle of creating a custom theme and app icons.

Results

Goals

Create an interface that allows a coach to monitor the head position of an athlete during
training or a race, as well as provide feedback to the rider to let them know when they
are out of the ideal aerodynamic position. The said interface should include a mobile
application that allows an athlete to add his/her name to a database, set the athlete’s
head position, set the distance needed to travel to trigger the haptic device, and display
the number of times an athlete’s head moves out of position during a given activity.

Accomplished

The interface we created has a splash page displaying the team’s logo, adds athletes to
a SQLite database, set a head position with an X, Y, and Z axis using the Bean or
manually using number pickers, display a live graph of an athlete’s head position, and
display an athlete’s activity history with a chart of each activity and the number of times
the athlete went out of position for each activity.

Lessons Learned

One of the biggest lessons our team learned was not to take too much on at once
because things are always harder than they seem. In the beginning stages of our
project, not much was known about the software-hardware interface. Feeling overly
ambitious, the team decided to take on all aspects of the project and develop the mobile
app as well as program the Arduino boards. It was assumed that because a few
members had some prior mobile and hardware experience, that the learning curve
would not be too steep, we were wrong. The hardware proved to be much more
challenging than we had originally thought and required us to make some major
implementation changes. After weeks of research with very little results, we came to the
realization that maybe we had bitten off more than we could chew and it became
overwhelming.

Another lesson the team learned was to ask ourselves, not only if something was
possible but also how feasible it is. Our team originally wanted to develop cross platform
for iOS and Android because it would make code management much easier. After some
research, the team decided to use Kivy, a python based IDE, and began reading how to
use it. Kivy, at the time, was still in alpha stages and did not work as expected. Xamarin
was the next option but this also had it's shortcomings and after days/weeks of
development the team discovered it would not be able to fit our needs. As a team we
decided to start doing more research into how feasible something would be instead of
just assuming “It worked for them, it should work for us”. Doing so allowed us to

discover that although crossplatform is possible, it's not recommended and should only
be used to develop native apps. Asking how feasible a bluetooth interface would be
lead the team to discover that just because a component supports bluetooth does not
mean it will work with other bluetooth devices and some bluetooth devices are more
user friendly and easier to program than others.

Additional Development Information
HeadPositionActivity.java (Saving the Head Position)

One of the last component that needs to be added is the light blue bean communication
with the gyroscope. When reading in the three integers for the head position in
HeadPositionActivity.java method retrieveXYZ(), the light blue bean needs to
communicate with the gyroscope to produce numbers that represent the actual head
position. As of now the function reads in the three values corresponding the
accelerometer in the light blue bean.

SessionActivity.java (Reading in Live Data)

As of now, when you press the start button to begin the session and read in values from
the light blue bean, the bean sends the “X” value of the accelerometer inside the bean.
This is then loaded onto the graph seen in the activity. The value read to the graph can
be changed by changing the code inside bluetoothRunnable method called run().
Comments are provided in code to explain further.

The SeekBars that determine the range and threshold have constant max values
(SEEKBAR_MAX) that can be changed at the top to better suit incoming data.

Time between each data point also has a constant at the top called
TIME_BETWEEN_POINTS.

Lightblue Bean

The software utilizes an open source APK to connect the Lightblue Bean. The APK read
in the packages of information using a handler to define the what package was
received.

Custom handlers were created to define what information was being sent between the
LightBlue Bean and the Android device. An exclamation mark (“!”) sent from the Android
device tells the Arduino software on the Bean to send the current values for X, Y, Z axis
back to the device (right now it is returning the accelerometer readings). An at sign
followed by a defined set on X, Y, Z coordinates (“@,” + “Integer.toString(x)” + ...) will
be received by the Bean and stored int to an integer array called arrXYZ. This may be
used to set new head position values.

Bluetooth

The app currently only handles one Lightblue Bean at a time. A system needs to be put
into place to connect different Lightblue Beans to each rider.

Our team assumed that the data sent between the Arduino and the Android device is an
X,Y,Z axes reading. The functions that handle the communication are in the Bean.java
class, and are easily modifiable.

The head position set in HeadPositionActivity.java is passed to the Arduino when the
start button is pushed in SessionActivity.java it currently only passes in the X,Y,Z axes
and needs to send the threshold and seconds before the haptic device is activated.
Another option is to send a signal to the Arduino telling the haptic feedback to activate.
This would require a function to handle the amount of time out of position and test to
see if the position is in between the threshold and activation button. Currently more
information is needed to make this decision.

The library for the unofficial APK for Android contains The MIT Licence Agreement
please read it.

Arduino

The code for the Arduino runs a loop that listens for data. When a message is received
command is the first piece of information found. This is done by checking if the string
contains the command character either returning the position of the character or
negative one. The string is then passed to the parsing function that removes the
information and stores it into an array. The array must be extended to for in information
that is mentioned in the Bluetooth section above.

Resources

Information on GATT protocol -

https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx

Example of Arduino code using Lightblue Bean Library -

https://punchthrough.com/bean/examples/

The unofficial APK for using on Android -

https://bitbucket.org/littlerobots/beanlib

Android Development Tutorial (Would recommend understanding most of Getting
Started)

http://developer.android.com/training/index.html

https://developer.bluetooth.org/TechnologyOverview/Pages/GATT.aspx
https://punchthrough.com/bean/examples/
https://bitbucket.org/littlerobots/beanlib
http://developer.android.com/training/index.html
http://developer.android.com/training/index.html
http://developer.android.com/training/index.html
http://developer.android.com/training/index.html

