

Aventura VoIP Module

Integrating Asterisk Voice over Internet Protocol Phone System with Aventura Roaming

Awareness Software

Final Report Document

Stephen Kennicutt
Tyler Thorn

June 15, 2015
Aventura VoIP Team

T e a m A v e n t u r a – V o I P M o d u l e | 2

Table of Contents

Introduction

Requirements

Aventura RAD Core
VoIP Server
Non-Functional
Potential Risks

System Architecture

Design and Implementation

Technical Design

Results

Appendix A – Explanation of Options

Appendix B – Administrator Guide

Section 1: Installing Asterisk Server
Installing Asterisk Solo
Installing Asterisk with a Graphical Front-End

Section 2: Configuration for the Asterisk Server
SSH Connection
Configuration Files
Directories
FTP Server (Optional)

Section 3: Integrating Asterisk with Aventura
Asterisk Requirements
Aventura Requirements

Section 4: Polycom Phones
Section 5: Sample Configuration Files

Sample Domain Configuration File
Location User Sample Configuration File
Sample Extension Configuration for One User
Sample Database Table
Sample FTP Root Directory

Section 6: Scripts
File Change Watcher

Appendix C: Parser Library API

Appendix D: SecureFileTransfer Library API

T e a m A v e n t u r a – V o I P M o d u l e | 3

Introduction
Aventura is a Denver-based software company that focuses on developing customized solutions for
medical facilities. Aventura’s flagship product is the called the “Roaming Aware Desktop” (RAD) which
allows medical personnel access to secure, consistent and customized workflows to help reduce time
spent on mundane and repetitive technical functions. The RAD is comprised of a central server that
hosts the system’s core functions and user endpoints that communicate with the core. This server-
endpoint interaction provides a way for doctors and nurses to have a type of “roaming profile” service
that allows these medical staff’s unique desktops to travel around the hospital as they login with
personalized Radio-Frequency Identification (RFID) cards to card readers attached to the endpoints
placed in various rooms. In addition to presenting necessary patient information and transferring user
settings to the current endpoint, the RAD system can also set default printers to the one that is the
closest to the current location. For this project, Aventura has asked us to add a Voice over Internet
Protocol (VoIP) module to the core system that gives the RAD the ability to have a dedicated internal
phone line follow users as they travel around the medical facility.

Requirements

There were two functional abstract services that we needed to implement for this project, which we
broke into smaller sub-problems:

Aventura RAD Core:

 Collecting information about user when signing in

 Set appropriate phone number to user

 Merge maps of phones with maps in Aventura core database

 Query information about current location

 Maintain proper security

VoIP Server:

 Phone number will follow provider

 Calling a number results in the phone ringing in the intended recipient’s current location

 If no available phone, call will be forwarded to the recipient’s cell phone.

 Mapping phones to locations

 Matching users to phones

Non-Functional:

 Module written in C++

 Module to be used with existing, stable, release of software

 Will package into module for release with product

 Development on separate branch of software

 Use Visual Studio for development

 Asterisk service used for VOIP server

Potential Risks:

 Asterisk and Aventura are fairly complicated technologies and there was no guarantee that
integration was possible

 Testing the overall framework was very difficult, as it couldn’t be simulated virtually

 Neither one of us had experience with implementing a VOIP server

T e a m A v e n t u r a – V o I P M o d u l e | 4

The design of the Aventura Voice over Internet Protocol (VoIP) module was largely driven by a “do what
works quickly” philosophy. The functionality of our module has not been implemented before (or at
least no internet footprint was left by any similar pre-existing implementation) so we had to invent the
system ourselves.

System Architecture

From an abstract view, our module will need to recognize a ‘tap’ from a user, take that tap and the
location and be able to match the user’s extension to the phone in his location. On the Aventura side, a
soft client runs on an end point, the user taps his card and the soft client sends a tap notification to the
Session Manager (Aventura server). From there, the Session Manager does a look up and figures out if it
was a “tap-in” or a “tap-out”. From there, it will message the VoIP Agent and then the VoIP Agent will
then tell the Asterisk Server what changes to make so that the extension will be correctly routed. The
following diagram depicts the situation of a “tap.”

The Module will sit on the Aventura Server and will be like all the other agents that they have. The
module will not need to be there for the system to work but will work with an existing system. The
following diagram shows the Aventura setup and the VoIP Agent and its interactions.

T e a m A v e n t u r a – V o I P M o d u l e | 5

Design and Implementation

Our first task was to understand how Asterisk, the open-source VoIP server that the client requested
that we implement, functioned and how to correctly create roaming phones in the system. After
understanding how phones communicated with each other, we were able to create and evaluate two
viable methods for phones to properly roam from location to location. We provided an explanation of
options document that is included in Appendix A:

1. Have the physical phones register as a new user (that matched the person entering the room)

system wide whenever a user logged in to a terminal.

2. Have two sets of users in the system, one user representing the location of the phone, and the
other user representing the personnel in the hospital. With this configuration, we would
forward the human users to the location users, edit the appropriate configuration files each
time a user changed locations and reload the dial plan through the Asterisk system commands
on the server.

The first scenario was our initial plan which followed the model of how a Voice over IP system is typically
used. The issue with this system is that the phones need to be rebooted in order for them to receive
their new instructions and dial plan from the server. This restart was discovered to be very time
consuming (on the best case we achieved about a 1:15 minute reboot). VoIP systems and phones were
not designed to be moved or change users regularly, therefore there was no feasible way to speed this
up, nor could the phones be told to pull a new configuration remotely without a reboot. Conversely,
when trying out our second option, we achieved reload times of the server configuration of no more
than one second. Consequently, the second path is the one we chose.

Knowing that our routing changes were going to be implemented through changes in a user’s
configuration file, we needed to create a way to dynamically edit these files in our client agent. This
became pretty tricky as the Aventura client operated on Windows Server-based machines while the
Asterisk server is typically deployed on a Linux distribution, and there was no clean cut way to achieve
file transfers between these operating systems in an autonomous fashion in code. We went and
researched some open source libraries to prevent us from having to write a transfer protocol from
scratch. We found two libraries that suited our needs: libssh and libcurl. Both of these transfer libraries
worked for our purposes for similar time costs, but we decided to go with libssh as the code was more
readable than libcurl and provided more options for the file transfer from trivial file transfer (tftp) to
secure copy (scp) and secure file transfer (sftp), including hypertext transfer (secure) (http(s)).

Ultimately, we decided to use the scp functionality of libssh. One of our requirements was that the
transfer be somewhat secure, (not unbreakable encryption, but also not a plaintext transfer), which
ruled out the http, tftp and ftp protocols. In addition, we wanted the system to be able to work in a wide
variety of implementations. Using https would require setup and the creation of certificates as well as
trying to get the certificate to authenticate in our program, which was beyond our desired scope. Lastly,
with sftp we would have to have the Asterisk server also be set up as an ftp server and again certificates
could be a problem. This left us with the scp protocol through an ssh tunnel. After the connection is
verified the first time and the server is added to known hosts, there is no other security issues (other
than passing credentials which all implementations would require) and it only requires that the Asterisk
server allows ssh connections from one specified user and only access to the directory that the
configuration files are located in.

T e a m A v e n t u r a – V o I P M o d u l e | 6

We wrote throwaway code to test out the efficiency and usage of libssh using scp and ssh tunnel. We
came up with a way to further abstract it to make the use easier and better fit our system. We ended up
writing a class that creates the connection and has methods for pulling and pushing files. We then had a
decision to just put the class into our main program or to pull it out and use it as a library. Around the
same time we were also working on a file parser. We broke that out into two classes. One that
performed the parsing, and the other was an object to hold one entry of the file. There was then a
container to hold multiple of these objects per file. This too we had to decide if we will use simply in the
project or create a library out of it as well. Because we made the file transfer easy to use and generic
enough to be used almost anywhere file transfer needed to happen, we decided to make it a library. We
also decided to make the parser and entry class as a library. With some guidance from the team at
Aventura, we decided to go with a dynamic library. The main reason for this is that we can make
changes to the existing functions to make them better or to fix a bug and they can just be a drop in
replacement rather than having to recompile the entire project as would be the case with a static
library.

Next, we needed a way for the server to reload the dial plan after the configuration files had been
edited. Though we could have come up with a way for the client to issue a reload to the server, we
decided it would be best if the server had a listener script that watched the directory with the
configuration files to see if any files had been edited and then call the reload function. This was due to
the fact that we wanted the server to be in control of the configuration files whenever possible to
prevent a possible “dining philosophers” problem where the contents of the configuration files would be
altered incorrectly and avoid multiple, simultaneous connections to the server, one for the scp and one
for the reload.

Finally, we needed a way to wrap our client functions into an Aventura agent. We deferred to the design
guidance of the Aventura engineers, as they were most familiar with the design decisions implemented
in existing agents. We are unable to elaborate on the design decisions made in regards to agent creation
due to a non-disclosure agreement with the client.

Technical Design

From all of the decisions we made, we were able to produce the following UML diagrams of how our
agent will work.

UML 1 Parser Dynamic Library

T e a m A v e n t u r a – V o I P M o d u l e | 7

UML 2 Secure File Transfer Dynamic Library

The two UMLs above are of our two libraries, the first is our SFT library. It is a wrapper for libssh. We
decided to make it into a class rather than using static functions (how libssh is) so that one connection
can be made and we can use that connection the entire time that the agent is running. There are set
functions for setting the information of the ssh tunnel including the host address, username and
password. Then there are also functions for reading and writing files through the scp protocol. The write
function is overloaded for a total of three different ways of passing in a file to write. The read file
method will read the given file and write it locally to the current directory. The second library is the
Parser library. There are two classes in this library. Rather than just having strings passed from the
parser, there is an Entry class which is one entry in the dial plan for the current user. The parser, when
parsing, will make a collection of Entries that can then be retrieved by the library user. These entries
also have modifiers and one of which, the change location function, we use to set the route for the new
location. There are also set active and set inactive modifiers so that a tap in can revert to the default
location for the user.

T e a m A v e n t u r a – V o I P M o d u l e | 8

UML 3 VoIP Agent

Above is the UML for the VoIP Agent. The agent was made to fit the model of the existing Aventura
Agents. The agent is comprised of a SMThread (SessionManager Thread) which is then wraped into a
GUIThread. Both SMThread and GUIThread are child classes of the SMBaseThread and AgentGUIThread
respectively. Most of the methods are inherited and some are virtual and need an instantiation by the
child class. The following picture shows a sample of what the GUIThread looks like.

 UML 4 GUI Screen

T e a m A v e n t u r a – V o I P M o d u l e | 9

UML 5 Full Project UML

Putting all of the UML diagrams together, we arrive at this final UML with a MessageVoIPAgent function
to send a tap in or tap out message to the VoIP Agent.

Results

We were able to successfully create a VoIP server that works as desired with Aventura’s managing
service, with log ins, log outs and log overs being appropriately handled and reflected in phone
behavior. When a user logs in to a terminal, our VoIP server correctly routes that user’s extension to the
nearest phone based off of information stored in the RAD’s database. When a user logs out, the VoIP
server cancels the established route. In addition, we were able to add caller identification functionality,
which was not one of our given requirements. This interaction is executed within 0.02 seconds which is
ideal for already impatient healthcare personnel. This number can be broken down into parts. The first
is the time it takes from when a user taps to when the corresponding files have been modified and
written to the Asterisk server. The first time a user taps, this takes 14 microseconds to complete

T e a m A v e n t u r a – V o I P M o d u l e | 10

because the ssh tunnel is not created until the first tap. Then, the following taps will only take 4
microseconds. A tap over will take 8 microseconds (because it is a tap out and a tap in). Sample output is
provided for the timing of the Agent.

The slower of the timing is the reload that the Asterisk server takes, each tap requires a dial plan and a
SIP reload, these each take approximately 10 milliseconds to complete making the total 20 milliseconds
(we are truncating the time the Agent takes as it is minimal compared to the Asterisk Reload). The
asterisk reload is shown below.

If Aventura decides that they want to package our system with the existing RAD system, they will have
to create a way properly update the database with the list of phones at each location (which they have
done with printers) and implement a way to call an outside line with the Asterisk server. Overall the
project was a success and all of the requirements were met and fully accepted by Aventura.

T e a m A v e n t u r a – V o I P M o d u l e | 11

Appendix A – Explanation of Options Document

Exploration of Options

Preliminary –
 IP phone systems are not meant to be moved around often. They are designed to be linked to a
user and stick to that user for life. VoIP and digital phone systems are also designed that a user and an
extension are synonymous. Asterisk especially, following best practice guides, the user is actually the
same as an extension, the username is the extension (display names can be of the actual user).

High Level VoIP Overview –
 VoIP phones are initially set up with an ftp server and credentials for the server as well as the
PBX server. At boot time, the phone goes to the ftp server and retrieves the appropriate files for its
configuration. These files have information on the extension they are supposed to handle, as well as a
user and secret to use to register against the PBX server (Asterisk). Then the PBX server will know the IP
address of the registered phone and route calls appropriately.

The following three options are what we have come up with as plausible solutions. None have been fully
tested to ensure capability.

1. Changing of ftp files –
In this use case, the config files for the phones on the ftp site will be changed

accordingly. The extensions will be tied to users and we will change the extension in the file of
the MAC address of the phone.
Pros –
a. Most like existing systems
b. Able to use web configuration GUI and can (probably) be extended to other VoIP systems
c. Able to use user control panel web gui
d. Can (probably) integrate existing system
e. Normal configuration more suitable if stationary positions exist (Receptionist)
f. Intuitive system management
g. Probably can have all features of VoIP system
h. Soft Phone capability

Cons –
a. Phones need to reboot each time extension changes (slow)
b. Might only work with Polycom phones
c. Need FTP library to interact with module

2. Changing PBX config files –

In this case, the users will be the rooms that the phones are in. The people using the
phones will have their extensions and when entering a room, the config files in the PBX system
will be modified, by changing the Dial Plan of the extension. The config is then reloaded and the
extension ported to the right room.

 Pros –
a. Faster reload time

T e a m A v e n t u r a – V o I P M o d u l e | 12

b. Closest to description of action
c. Very proprietary

Cons –
a. Outside of design and functionality
b. Will not work with existing systems
c. Will not work with a web GUI
d. Very proprietary
e. Less intuitive system management
f. Need to create ssh tunnel in C++ code
g. Need to be able to shell out in said tunnel
h. Cannot have many features (Probably not even voicemail)

3. Soft Phones –

There is some software that allows a computer to act as a phone, the phone registers as
a user to the server and can make and receive calls. We may be able to register the soft phone
as the user logs in and have the calls come through the soft phone and not have hardware
phones in the room.

 Pros –
a. Only changing config files at the workstation, not on a server
b. Registers correctly with PBX
c. Can use any system with SIP configuration
d. Easily implements in existing system, just need credentials
e. Can use with any VoIP system (depending on system, soft phone may need different

manufacture)
Cons –
a. No real phone
b. Need to bring microphone and speakers forward from Terminal Session
c. Not as private as hard phone
d. Less feature rich

T e a m A v e n t u r a – V o I P M o d u l e | 13

Appendix B – Administrator Guide

Section 1: Installing Asterisk Server
There are two main options that can be used to install the Asterisk Phone Server. The first option is to

install Asterisk on its own without any easy configurator front end. This is the preferred method as the

integration with the Aventura system becomes much easier. Although the other way is also possible, but

less preferred.

Installing Asterisk Solo (without use of configuration front end)
Asterisk is open source and runs best on Linux Operating systems. The common environment is

to install Ubuntu server 12 or 14 LTS. Asterisk will work on both versions. There are other

distributions that will work, including CentOS and there is a package in the Arch Repositories for

Arch Linux (although the module has not been tested in an Arch environment). Once the host OS

is installed, Asterisk can be installed. Installation archives can be found at this link. The

download is of a .tar.gz file. Extract the contents with the following command (it is

recommended to extract the tar ball to the /usr/local/src directory, and this guide will assume

that you do):

Using the correct filename for the chosen version. There are a few dependencies that are

included in the Asterisk tar ball. The first is DAHDI. Change the directory to the DAHDI directory.

Then DAHDI can be installed with the following commands (as root or elevated user):

The next dependency is LibPRI.

Move into the LibPRI directory just as before.

$ tar -zxvf {asterisk}.tar.gz

$ cd dahdi-linux-complete-{VersionNumber}

make

make install

make config

$ cd libpri-{VersionNumber}

NOTE: DAHDI Linux MUST BE installed prior to LibPRI, LibPRI may install without it but the
configuration will not be correct.

http://www.asterisk.org/downloads/asterisk/all-asterisk-versions

T e a m A v e n t u r a – V o I P M o d u l e | 14

Then LibPRI can be installed using the following commands (again as an elevated user)

One more set of non-repo supported dependencies is pjproject. Asterisk versions 11 and later

will handle pjproject accordingly, if using an earlier version, installation instructions can be

found here.

Then change to the directory containing the Asterisk source files.

In the Asterisk directory there is a script called configure that will check the system for required

libraries and other dependencies. All of the remaining dependencies should be in your choice OS

repositories. Running configure with:

Will check the dependencies and will alert of any missing packages. Install the missing packages

and run configure again.

And configure should be re-run after to verify everything is installed.

Once all of the dependencies are installed and found, the configure script will output the

following screen.

make

make install

make config

$ cd /usr/local/src/asterisk-{Version}

./configure

NOTE: Running configure multiple times causes a lot of data to be cached. Sometimes, this
will output wrong results, the cache can be cleared by running:

make distclean

https://wiki.asterisk.org/wiki/display/AST/Building+and+Installing+pjproject

T e a m A v e n t u r a – V o I P M o d u l e | 15

Then you must select the packages for Asterisk to install. A graphical window will display and

you can select what packages to install. A detailed list of the options can be found here.

You are then ready to compile Asterisk, to compile, simply run the following command

 .$$$$$$$$$$$$$$$=..

 .$7$7.. .7$$7:.

 .$7$7.. .7$$7:.

 .$$:. ,$7.7

 .$7. 7$$$$.$$77

 ..$$. $$$$$.$$$7

 ..7$.?. $$$$$.?. 7$$$.

 $.$. .$$$7. $$$$7 .7$$$. .$$$.

 .777. .$$$$$$77$$$77$$$$$7. $$$,

 $$$~ .7$$$$$$$$$$$$$7. .$$$.

.$$7 .7$$$$$$$7: ?$$$.

$$$?7$$$$$$$$$$I .$$$7

$$$.7$$$$$$$$$$$$$$$$:$$$.

$$$ $$$$$$7$$$$$$$$$$$$.$$$.

$$$ $$$ 7$$$7 .$$$.$$$.

$$$$ $$$$7 .$$$.

7$$$7 7$$$$ 7$$$

 $$$$$ $$$

 $$$$7. $$ (TM)

 $$$$$$$. .7$$$$$$ $$

 $$$$$$$$$$$$7$$$$$$$$$.$$$$$$

 $$$$$$$$$$$$$$$$.

configure: Package configured for:

configure: OS type : linux-gnu

configure: Host CPU : x86_64

configure: build-cpu:vendor:os: x86_64 : unknown : linux

configure: host-cpu:vendor:os: x86_64 : unknown : linux

make menuselect

make

NOTE: Output may be different depending on the host computer.

https://wiki.asterisk.org/wiki/display/AST/Using+Menuselect+to+Select+Asterisk+Options

T e a m A v e n t u r a – V o I P M o d u l e | 16

This can take a few to several minutes to complete. When the compilation is complete, there

will be a message that looks like:

Then, as the message states, you can install the binaries using:

Once that has finished, you have successfully installed Asterisk. There are sample configuration

files that can be installed by typing:

Once finished, there are a few things to check to be sure the install was successful and the

service can run. First, we need to make sure that DAHDI is loaded and running. To do this, check

the lsmod function.

Ismod should output something like the following:

If the output is blank (e.g. nothing is written to the screen) look to your distros instructions on

starting services, and start the dahdi service.

To check if Asterisk is running, there is a supplied init file that can be checked with:

+--------- Asterisk Build Complete ---------+

+ Asterisk has successfully been built, and +

+ can be installed by running: +

+ +

+ make install +

+---+

+--------- Asterisk Build Complete ---------+

make install

make samples

lsmod | grep dahdi

dahdi_transcode 7928 1 wctc4xxp

dahdi_voicebus 40464 2 wctdm24xxp,wcte12xp

dahdi 196544 12 wctdm24xxp,wcte11xp,wct1xxp,wcte12xp

crc_ccitt 2096 1 dahdi

/etc/init.d/asterisk status

T e a m A v e n t u r a – V o I P M o d u l e | 17

If Asterisk is stopped, you can start it with the same script.

Congratulations! You now have a running Asterisk server!

Installing Asterisk with a Graphical Front-end

There are many different options for you to install Asterisk with a more user friendly

configuration interface. The most common and easiest is probably AsteriskNOW. It includes a

distribution, Asterisk and FreePBX (a web interface for Asterisk). The AsteriskNOW installation is

very straight forward and easy, but for instructions, follow this link.

Most other systems can be used. There are a few caveats that must be met including the ability

to #include other files for the SIP and extensions configurations as well as making users as the

location of the phone and using typical naming conventions and not making a user as an

extension (as most systems will do by default).

Section 2: Configuration for the Asterisk Server

SSH Connection
It is required for the Asterisk Server to allow SSH connections, although security will not be put

at risk. The SSH connection is for the transfer of files (using Secure CoPy) to and from the

Aventura Server.

Software such as fail2ban can be used with the Asterisk server (although under normal

circumstances, there would not be issues, it is recommended that the ip address of the Aventura

Server be an exclusion because of the retry nature of the module).

OpenSSH is the most common SSH Server Daemon for Linux systems and is available for most

distros. Check your distribution’s documentation for installation and set-up instructions.

Configuration Files

There are two sets of files that are needed both by Asterisk and the Aventura Module. The first

of these is the location users. These are the configuration files for the users (as the room) that

/etc/init.d/asterisk start

NOTE: This is NOT the desired method and you can expect to see performance changes and
incompatibility issues with Aventura software if using a GUI front end.

NOTE: Root privileges are not required and are urged against. A user can be created with
only read and write permissions to specific directories for the Aventura Module.

https://wiki.asterisk.org/wiki/display/AST/Installing+AsteriskNOW

T e a m A v e n t u r a – V o I P M o d u l e | 18

the phone will register to Asterisk as. The recommended set up is to have a domain config

Sample Domain Configuration File with the static information and then each of the locations as

users config Location User Sample Configuration File with the user information. The sip.conf file

will then need to have an inclusion to the directory <Sample>.

The second set of files is the person’s extension dial plan files. These files outline the dial plan of

the user’s extension. These files must be one per user and a sample can be found Sample

Extension Configuration for One User.

All of these files (after the initial set up) should never be changed. They are automatically

changed by the VoIP Module and any non-automated changes can break the system.

Directories

The Aventura VoIP Module requires two directories to be used only by Aventura. The first

directory is for the location user config files, this is known as the ‘locations directory’. The user

definitions for the locations of the phones’ users go here. The domain file (if included) and all of

the user definitions will go in this directory.

The second directory is for the user’s extension files. This directory is known as the extensions

directory. The files that have the dial plan routing for the user’s extensions go in this directory.

Both directories, and all of the files within, must be owned by the set up SSH user for the

Aventura Module. Permissions of the files will be preserved if they are more premissive than

rw_rw_r__ and need to be set to at least ___rw____ for the module to work. Again, the files in

these directories (after the initial set up) should never be changed. They are automatically

changed by the VoIP Module and any changes can break the system.

NOTE: The domain file can be named anything although it is recommend to be 0.conf or
start with an underscore as it needs to be loaded first into the Asterisk Configuration.
Another option is to #include it separately in the sip.conf first before including the entire
directory.

NOTE: To reduce the number of files. All the location users can be declared in one file.

NOTE: The person-user config files must be matched to the users Active Directory ID.

T e a m A v e n t u r a – V o I P M o d u l e | 19

FTP Server (Optional)

For hard phones that are configured using provisioning, they need to have a boot server. The

recommended setup is to have the boot server on the Asterisk server. You can make a new user

and use a daemon like VSFTPD to provide the ftp service.

Section 3: Integrating Asterisk with Aventura
The Aventura VoIP Module is designed to provide roaming phones to go along with the roaming

desktops. There are a few required items for the VoIP Module to work correctly. There are two sides,

the Asterisk Server and the Aventura Server.

Asterisk Requirements

The Asterisk server must have SSH enabled and a user for the VoIP Module to use. The

configuration files must be created with the correct syntax and format and must be in the

appropriate directories. The directories and the files within must be accessible to the SSH user.

When a change is made by the VoIP Module, both the dial plan and the SIP configuration must

be reload to the Asterisk Server. A script to do this automatically is provided <here>. One script

must be used for each of the directories and each of them needs to be run as root.

Aventura Requirements

The information for the SSH is required. In the database, ConfigStringEntries must be made with

titles of VoIP_Host, VoIP_User, VoIP_Password, VoIP_Locations_Directory, and

VoIP_Extensions_Directory with each of their respective values as well as the phone to location

mapping. The mapping takes the form of VoIP_Phone_ {LocationName} as the title and the user

of that phone as the value. Sample entries of the database can be found <here>.

If the above has been installed and configured correctly, the Aventura VoIP Agent, when connected to

Session Manager will provide phone roaming with the Aventura System.

Section 4: Polycom Phones
Our setup uses Polycom phones and they can be non-trivial to set up with Asterisk. There are multiple

configuration files that the phones require. These all need to be in the ftp root of the boot server. There

NOTE: Set the root to be a folder outside of the root of the Linux System. Users with only
read and write permissions to that directory are sufficient.

T e a m A v e n t u r a – V o I P M o d u l e | 20

is an XXXXXXXXXXXX.cfg file that corresponds to the hardware MAC address of the phone (the letters

need to be lowercase to work correctly). In that file it specifies the username that the phone is to use to

register to the Asterisk Server. This is the same username as the Location username talked about in the

docs. There is then a {username}.cfg file that the phone also pulls. There is then a directory that contains

language information and a default sound, .wav, file. Then you need three sip files, sip.cfg, sip.ver, and a

binary sip.ld. If using different model phones or different versions of firmware, these need to have

unique names and need to be noted in the MAC address config file. The phone will then write two sets

of log files, one for the boot information and then one for apps. A sample of the FTP root directory can

be found in Section 5: Sample Configuration Files

Section 5: Sample Configuration Files
The following are sample configuration files pulled from our working setup of the Aventura VoIP

module. Unless otherwise noted, the configuration files are from the Asterisk Server.

Sample Domain Configuration File

Sample 1 - domain.conf

Location User Sample Configuration File

Sample 2 - stephen_surface.conf

[aventura](!)

type=friend

context=from-internal

host=dynamic

qualify=yes

nat=no

;This file is automatically created and edited by Aventura VoIP Module.

;Do not make any changes to this file, as they will be overwritten

;and can cause system failure.

;This is the config file for stephen_surface

[stephen_surface](aventura)

secret=password1234

canreinvite=no

callerid=AVHQ\skennicutt

T e a m A v e n t u r a – V o I P M o d u l e | 21

SIP Configuration Sample

Sample 3 - sip.conf

Sample Extension Configuration for One User

Sample 4 - 186C22DE-60DF-4FA1-9A22-20E1D199971E.conf

[basic-options](!)

 dtmfmode=rfc2833

 context=from-internal

 type=friend

[public-phone](!,basic-options)

 directmedia=yes

[my-codecs](!)

 disallow=all

 allow=ilbc

 allow=g729

 allow=gsm

 allow=g723

 allow=ulaw

#include "/locations/domain.conf"

#include "/locations/*.conf"

;This file is automatically created and edited by Aventura VoIP Module.

;Do not make any changes to this file, as they will be overwritten

;and can cause system failure.

;This is the config file for AVHQ\tthorn

;[Default]

exten => 2000,1,Dial(SIP/tyler_desk)

;[CurrentLocation]

;exten => 2000,1,Dial(SIP/tyler_surface,15)

;[CellPhone]

;exten => 2000,2,Dial(SIP/TRUNK ID7202433010,15)

;[Voicemail]

exten => 2000,2,Voicemail(1000)

T e a m A v e n t u r a – V o I P M o d u l e | 22

Sample Database Table

Sample 5 - configString.data

Sample FTP Root Directory

Sample 6 - FPT Root

ID Name Parsing Expression Config String Owner ID

0CF9A064-84B4-4857-B28D-9B4375A418C3 PINFilter NULL .{4,} NULL

22E5BEF7-589D-44FE-9A88-F32B1E6CE6CD DeviceInactivityTimeout NULL 60 NULL

25553A3D-DACE-42A2-BC79-651D83829E49 VoIP_Locations_Directory NULL /locations/ NULL

7ED0548-7118-4092-845F-4BC8B5EEB654 VoIP_Extensions_Directory NULL /extensions/ NULL

61ED4BE6-710D-4EA8-A6BF-A0AAADA8A0AB DefaultDomain NULL avhq.local NULL

78CF572D-4911-430F-819D-568B221B402F VoIP_Host NULL 10.16.0.80 NULL

80812BE0-652B-441A-AA38-6E574B1D9D71 VoIP_User NULL tyler NULL

80861F01-F8FB-4F0A-9D3C-CED72D1CEF2E VoIP_Password NULL aventura NULL

9470DFA3-7151-48E5-8D27-E0BCC2099108 isStepDownAuthEnabled NULL false NULL

BB83B5EE-3B36-4489-AD53-F04E1B303A4D isAlternateAccessAlwaysAvailable NULL false NULL

CF345002-C96E-40EF-9D2B-1DABF04C66FC VoIP_Phone_1 NULL tyler_surface NULL

E34AE8A7-660C-44AA-A969-31DD3F941CE9 keyboardAccessDurationHours NULL 24 NULL

EB5EA8FD-D0B9-4794-B1FF-B114B90E33B5 isPinEnabled NULL false NULL

FFE34C09-8FE9-4372-8B23-8B2CB6D4CDC6 VoIP_Phone_2 NULL stephen_surface NULL

T e a m A v e n t u r a – V o I P M o d u l e | 23

Section 6: Scripts

File Change Watcher

#!/bin/sh

Set initial time of file

LTIME=`stat -c %Z ./*`

while true

do

 ATIME=`stat -c %Z ./*`

 if [["$ATIME" != "$LTIME"]]

 then

 echo "Dialplan reloading"

 SYSTIME=$(date)

echo "Dialplan reloaded at "$SYSTIME" ,check

/var/log/asterisk/messages for details." >>

~/logs/listenerlog.txt

sudo asterisk -vvvvvvrx "dialplan reload" >>

~/logs/loadinglog.txt

 LTIME=$ATIME

 fi

 sleep 1

done

Script 1 - filemod.sh

T e a m A v e n t u r a – V o I P M o d u l e | 24

Appendix C – Parser Library API

Parse Library API

Parser object (uses parse namespace)

Public class methods

Passes in a predefined filestream (must open file outside of the class)

void set_file(std::fstream*)

Returns a pointer to the list of entries parsed from the config file. Can use

methods

std::vector<Entry>* get_entries()

Primary function call to parse the config file.

int parse()

Returns the appropriate error string

std::string get_error()

Entry object

Public class methods

Constructor (class doesn’t have a default constructor)

Entry(int ext_num, std::string ext_str, std::string title, bool is_active)

Class getter methods

bool isActive()

int get_ext_number()

std::string get_ext_str()

std::string get_title()

Converts attributes to one string.

std::string to_s()

T e a m A v e n t u r a – V o I P M o d u l e | 25

Appendix D – Secure File Transfer Library

Secure File Transfer API

namespace
namespace sft

Return Values
SUCCESS 0
UNKNOWN_HOST -1
AUTH_FAIL -2
READ_FAIL -3
WRITE_FAIL -4

Constructor
FileTransfer();

Methods for creating and connecting the tunnel
int returns are error codes.
void set_host(std::string);
void set_user(std::string);
void set_password(std::string);
int open_connection();
void close_connection();

Methods for reading file, the full path to the file and to the full
name of file
int returns are error codes.
int read_file(std::string);

Methods for writing file, first two are always path to file and name
of file
int returns are error codes.
int write_file(std::string, std::string, std::string);
int write_file(std::string, std::string, const char*, size_t);
int write_file(std::string, std::string, std::fstream&);

Method for error reporting, sets to most recent error if one of
previous calls returns something other than SUCCESS
std::string get_error();

Retrieve the file, mostly for testing purposes, the file is written to
the location of the executing program. This will return a string of
the file.
std::string get_file();

