
Avaya Inventory Management System

June 15, 2015

Jordan Moser
Jin Oh

Erik Ponder
Gokul Natesan



Table of Contents

1. Introduction 1

2. Requirements 2-3

3. System Architecture 4

4. Technical Design 5-6

5. Design and Implementation Decisions 7

6. Results 8

7. Appendix I 9-10



Introduction

Client Description

Avaya is an internationally recognized company that specializes in business solutions. With
offices set up worldwide, its headquarters are located in Santa Clara, California. These
business solutions are broken down into three categories: Team Engagement, Customer
Engagement, and Fabric Networking. Avaya provides technologies and services to large en-
terprises, mid market companies, small businesses, and government organizations. Through
the help of Avaya’s services and consultations, customers are able to manage risks and max-
imize performance while dealing with their business requirements.

The Avaya global demo team currently presents demos at trade shows and to its customers
around the world. This particular team at Avaya is in charge of ensuring the correct equip-
ment is sent to various locations for trade shows. As the demand for the global demo team
has increased, they have discovered that it is difficult to maintain the precise location for
their equipment at all times. Therefore, they need a system for tracking their products as
they send them out to various trade shows.

Product Vision

The primary goal of this summer field session project is to create a web application that can
keep track of various assets when they are sent out from Avaya. The product is intended to
be used by an IT related employee within the company. It is critical for the success of our
software that each asset has status and location attributes that can regularly be updated.
Additionally, this system needs to allow the administrators to scan QR codes and link to the
site to find the current location of the asset or change its status. As well as implementing
the tracking API, we need to design a user interface for interacting with the database where
this information will be stored. This target time frame for which we intend to complete this
project is six weeks.

1



Requirements

We need a web application that would satisfy the following requirements:

Functional

Assets Page:

• List all assets that have been created

• Show complete asset information after clicking on the asset name

• Enable each asset to be edited if it does not belong to a case

• Enable each asset to be deleted but not removed from database

• Include a quick add to place an asset into a case

• Allow for creating a new asset

Cases Page:

• List all current cases and number of assets in the case

• Show all assets in a case after clicking on a case

• Enable each case to be edited, either adding or removing assets from a particular case

• Enable each case to be deleted, completely removing the case from the database

• Allow for creating a new case and adding assets to that case

Histories Page:

• Display the asset name, status, location, and date the asset is created/updated

• Sort the assets by date created/updated

Miscellaneous:

• Allow for assets and cases to be loaned, include renter’s information for the loaned
item

• Send email alerts to borrower when return date is approaching

• Include paginations for assets, histories, and cases pages

2



Non-Functional

• The web application user interface will be written in HTML

• The API, which maintains information regarding about each item, will be written in
javascript

• Document the API portion of the project

• The final project will be submitted in a GitHub repository

• When demoing the project, be able to pull up an asset by its QR code

3



System Architecture

MongoDB

Express

RESTful API

Angular UI

Node Server

Mongoose

Client Browser
http

Send App to client

Get data 

to display and 

modify the data

Interact with Database

Figure 1: Design

Figure 1 depicts the overall design of our application. The client will browse to our website
which will be running on a node.js platform. Express.js will be our backend application
that handles all of the servers routes. Our angular application will be the front-end of our
application and it will get sent to the clients browser from the express route. The client will
navigate the Angular application to create new assets and cases. The Angular app will then
send the new data or updates to our Express application via the RESTful routes we have
created. The Express app will then use mongoose.js to interact with our Mongo database to
update the records for persistence.

4



Technical Design

Our database will be created with the following schema to facilitate our needs for this ap-
plication.

Asset

id int

name string

price float

case_id int

updated_at date

History

id int

asset_id int

current_location string

current_status string

created_at date

return_date date

fedex_tracking string

loaner_phone string

loaner_email string

1

n

Case

id int

name string

1

n

Figure 2: Schema

Our schema has three main models which are important to the database: case, asset, and
history. Figure 2 helps depict their individual attributes as well as the relationship between
these different models. Each asset has a unique id number and a name. Additionally, it can
come with a price and if it belongs to a case, a case id. An asset can also have a return
date depending on its status. The cases model is extremely simple. A case will consist of a
case id and a name. Cases are related to assets such that a case can contain multiple assets.
Finally, there is a history model designed so that each asset will have a collection of history
records. The history will contain its own id number that will not be shown. This attribute
is strictly for database purposes. An asset’s history holds the asset id and records the fedex
tracking number, current location of the asset, current status of the asset, as well as loaner
contact information, and a timestamp for when the history record was created.

5



Client Browses to http://localhost/

Express receives request

sends back index.ejs which is 

the angular application

Client then clicks on Assets

Angular requests JSON from 

http://localhost/assets

Express uses mongoose.js to find all

assets and sends back a JSON object

Angular renders Assets template with 

assets from the request

Client clicks add new asset

Angular renders assetAddForm template

Client enters the data like

name: iPhone

Cost: 300

status: available

location: Avaya

Then clicks submit

Angular sends POST request to 

http://localhost/assets

Express uses mongoose.js to store

the data entered and sends back the 

stored object as a response

Angular receives the JSON object and stores

it in its own memory

Angular routes client to assets page

and the asset shows up in the list.

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 3: Process for Adding an Asset

Figure 3 depicts a simple process of adding an asset to our database and the interactions
that Angular has with Express. Step 1 begins with the user navigating to the application like
they would to any other website. Step 2 is where we introduce Node.js and Express.js. Node
is the javascript runtime running the application and Express provides the framework and
routing for this application it is similar to Ruby on Rails or Laravel. Angular is a javascript
framework that runs on the client browser and generates all the pages that the user sees. Step
3 and 4 illustrate our angular application interacting with our RESTful routes we designed in
Express. Step 5 and 6 document the exchange of information from our Express application
and Mongo with our Angular application. Angular sent a request for data in step 4 which
is handled by the Express route. In this route, mongoose.js and our asset model is used to
pull data from the Mongo database. This data is then packaged into a JavaScript Object
Notation (JSON) format which is the response that Express sends back to angular. Angular
then injects the data received into an HTML template via data binding that is a feature of
Angular. The figure then continues to illustrate how a POST request submitted via a form
can then be stored in the Mongo database via mongoose and the asset model (steps 7-12).
Finally when the data has been persisted to the database, Angular redirects the user to the
assets page once again where a request is made for all the assets like in step 4. This process
of gathering data and storing data via HTTP requests from the Angular framework to the
backend is what makes up the MEAN stack utilized in this application.

6



Design and Implementation Decisions

• Our first design decision was to determine what framework to use to create our appli-
cation. We had considered frameworks like Ruby on Rails, PHP frameworks, and the
MEAN stack. We were informed by our client that he is currently using the MEAN
stack. This allowed us to implement our entire application using just javascript, HTML,
and some CSS.

• Instead of implementing our own CSS, we decided to use the bootstrap framework. This
made styling our application significantly easier and allowed us to focus our intentions
on the logic of the application rather than the aesthetics. However, we did not need
to sacrifice the look of our application.

• Our next design decision was to pick a database for our application. Conveniently the
MEAN stack provides us with Mongo DB. Mongo is not like a MySQL database and
as such we needed to figure out how to connect to the database. There is a javascript
library called mongoose.js that allows the application to communicate with the mongo
database seamlessly.

• Since our client wanted to be able to audit their assets, we needed to keep a permanent
history of all the assets. Our next design decision was to “soft delete” items from the
database. This way we can keep a history of the asset without permanently removing
it from our database. If there is any need for an audit, the client can easily find assets
they currently own and items that they loaned.

7



Results

Here are the results of our application:

• All functional and nonfunctional requirements of the project satisfied

• Works on various web browsers such as Chrome, Firefox, and Safari. Not tested on
Internet Explorer

• Asset page can be pulled up by scanning the item’s QR code

For the duration of this 6 week session, we gained valuable experience by working on an
application that would be used in an actual industry. Here are some of the lessons we have
learned through this project.

• Don’t underestimate the complexity of a project. After reading the description of the
project, we expected this project to take no longer than a couple weeks. But not having
any previous knowledge of the frameworks added more complexities to the project. It
took our group the entire 5 weeks to finish the project.

• Agile development is an effective method to work in a group environment. Commu-
nication is essential to the success of a group through scrums, retrospectives, and
planning.

• Web hooks are very useful for intercepting events in your web application and allowing
you to perform an action. However, we didn’t understand the concept of web hooks
and their uses until we implemented them. They allow the client to receive updates
when an asset is shipped or when a loaned item is expiring and they need to contact
the borrower to get the item back.

8



Appendix I

API Documentation

Routes

METHOD ROUTE EFFECT
GET / The main route of the application, Angular

lives here
GET /possible statuses Fetches all enumerated statuses
GET /assets Gets all the assets from Mongo
POST /assets Creates a new asset
GET /assets/:asset Gets a particular asset by id
PUT /assets/:asset Updates a particular asset by id
DELETE /assets/:asset Deletes a particular asset by id
GET /recent Gets 10 assets with the most recent updated

time
GET /histories Gets all the history records
POST /assets/:asset/histories Create a history and attach it to the asset
GET /cases Get all the cases
GET /cases/:case Get a particular case by id
PUT /cases/:case Update the name of the case
POST /cases Create a case
DELETE /cases/:case Delete a case and remove all the assets from

that case
PUT /cases/:case/assets/:asset Add asset to a case by id
DELETE /cases/:case/assets/:asset Remove an asset from the case
GET /locations Gets all the locations that have been entered

by users
POST /locations Adds new location to list of locations
POST /hooks Add web hook to database

9



Models

Asset Model

name: String,

price: Number,

updated_at: Date,

Case Model

name: String,

History Model

fedex_tracking: String,

current_location: String,

current_status: {type: String,

enum: ["Available", "On Route",

"Checked Out", "Lost", "Loaned",

"Deleted"]},

return_date: Date,

created_at: Date,

asset: {type: mongoose.Schema

.Types.ObjectId, ref: ’Asset’},

loaner_phone: String,

loaner_email: String

Location Model

name: String

Hook Model

server: String,

post_url: String,

status: {type: String,

enum: ["Available", "On Route",

"Checked Out", "Lost", "Loaned",

"Deleted"]}

Error Model

message: String,

stack: String,

status: String,

headers: String,

body: String

10


