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Introduction 
Newmont Mining Corporation was founded in 1921. It is one of the global leaders in 

gold and copper production and is a Fortune 500 company. Headquartered near Denver, 

Newmont has a goal to become the most valued and respected mining company through 

its industry-leading performance. The company would like to investigate the process of 

data mining as a means to classify websites describing various geological deposit types in 

order to expedite the process of evaluating projects of interest. 

 

Text mining is the process of deriving high quality information from text. It is used to 

study word frequency, perform pattern recognition, extract information, and create data for 

visualizations. The goal of text mining is to turn text into relevant data for analysis. Text 

comparison analysis is a broad field which involves determining similarity between one set 

of documents and another document by creating a model from the set of documents, and 

then comparing that model to another document to determine how related to the model the 

document may be. 

 

The task given for this field session project was to explore several data mining and 

visualization toolchains in order to construct a web application to assist in identifying 

projects of interest. The goal was to create an application capable of determining which 

potentially valuable projects Newmont competitors are working on by exploring their 

websites and comparing their mining operations to models produced based on the mineral 

deposits Newmont is interested in. Similarity between the models and websites would be 

determined by comparing the text content of the website to the models, where similarity is 

good if sites contain many words included in a model, and similarity is considered 

excellent if sites also use words in the same context as the model. Context is determined 

through the construction of topics, where topics are composed of the words that appear 

frequently together in a given model. 

 

  



Requirements 
Functional Requirements 

● Read in multiple sets of PDF documents and pull out the text for data extraction 

● Filter each document derived from the PDFs to remove fractured words and all 

words that are not nouns, verbs, adjectives, and adverbs 

● Generate an associated model for each set of documents derived from the original 

PDFs 

● Allow multiple models to be stored and compared against in the application 

● Utilize a web scraper to obtain the text stored on selected websites for later 

comparison to the models 

● Filter the text from each site in the same manner models were filtered 

● Compare each model to each site using a latent semantic indexing algorithm and 

produce a guess for which model each site is most similar to 

● Present the output from the latent semantic indexing algorithm in an interactive 

visual format using the d3.js library 

● Train a machine learning algorithm on a set of well defined sample sites with known 

deposit types 

● Test the performance of the machine learning algorithm on a set of sample sites 

with known deposit types to determine its accuracy in determining the correct site 

● Present the information from the machine learning algorithm in an interactive visual 

format using the d3.js library 

 

Non-functional requirements 

● Must function as a web application using Ruby on Rails 

● The code implementing functionality must be written in Python, Ruby, and d3.js 

● All code must be well commented and include relevant documentation for continued 

development and suggestions for where to go to improve existing results 

● Application must be formatted properly when used on Chrome browser 

● Application must run on an Amazon EC2 Ubuntu server 

● Code should be developed using a github repository for version control 

 

 

 

 

 

 

 

 

 

 



System Architecture 

 



The application was designed to run on an Amazon EC2 server on the Ubuntu 

12.04 OS. It can be accessed online whenever the Ruby on Rails server is launched, 

however our client requested that rather than permanently launching the application we 

simply document how to start and stop the Rails server. 

 

The diagram on the previous page shows the organization of our tools and 

additionally serves as a documentation of dependencies. Dashed lines represent 

dependencies and output. Solid lines indicate the tools and visualization that can be called 

from the Rails interface. Rectangles within rectangles show where there are specific scripts 

that can be run to convert their dependencies into output files. The Rails user interface and 

the database have no current dependencies. 

 

The top level control structure is the Rails interface. It has tools that allow every script 

to be run, placed in the correct order of their dependencies on the main page. Additionally 

it includes a brief description of what each tool does. It does not provide a way to view the 

output of each script, but it does allow users to access the visualization showing the data 

produced from the Latent Semantic Indexing algorithm. Running any one tool from the Rails 

application leaves the whole program in a valid state, provided the tool is allowed to finish 

running before another is run. This allows users to only call tools when something has 

changed or updated, and otherwise allows users to access the visualization directly without 

having to wait for the program to run. Documentation included with the application includes 

instructions for running each tool from the command line, for further development and any 

potential debugging. 

  



Technical Design 
This application can be divided up into four subcomponents: the latent semantic 

indexing comparison, the machine learning comparison, the graphical user interface, and 

the data visualizations. Because data mining exploratory applications don’t always 

produce accurate results, we decided to try two different methods to improve our chances 

of producing an effective product that would meet our client’s needs. 

 

Both algorithms were tested the same way. The client provided a list of over one 

thousand sites to run our algorithms with and a sizable number of these sites included 

additional information, such as the company name and the actual deposit type. Each tool 

monitored the guesses it produced and additionally determined the number of correct and 

incorrect guesses out of the known sites. This allowed us to get some indication of how 

well the algorithms were working individually as well as to make incremental improvements 

to each algorithm to improve accuracy. 

 

The machine learning algorithm takes a distinctly different approach from the 

algorithm utilizing gensim. This algorithm begins by examining all the text pulled from the 

various PDFs for the different deposit types. After performing various filtering and 

lemmatizing the text into distinct tokens, it performs a series of comparisons to determine 

which words are important to a specific deposit type, and each of these words are 

assigned the same initial point value. Then, it makes a pass through all of the available 

data and guesses the type of each deposit using the word lists and point values it 

previously generated. Next, it looks specifically at the deposits types that already have 

known types and checks if it guessed correctly. If the guess is incorrect, it examines all the 

words that contributed to the score and attempts to add points to words that were important 

and found for the correct model but not important to the other models. This process is 

repeated through many runs of the data in order to generate a best fit model for the data 

set as a whole that can be used to predict the unknown deposits. 

 

The visualization produced for the latent semantic indexing data displays the results 

by plotting points corresponding to each website using their standard deviation as the 

horizontal coordinate and their similarity index as the vertical coordinate. Additionally, the 

data visualization code was modified for use with the machine learning algorithm by using 

the length of extracted text for each site as the horizontal coordinate and the similarity index 

as the vertical coordinate. Hovering over a point in either visualization displays all data 

collected for that point. Clicking on a data point in either visualization opens the site in a 

new tab in the default web browser. 



 



Design and Implementation Decisions 
Dependency Decisions 

All tools and libraries used were chosen first and foremost for being well-maintained 

open source projects. It was advantageous to use projects available under LGPL, BSD/3, 

MIT/X, and MIT licenses for their freedom for ongoing projects using the provided source 

code, which include nearly unrestricted use for both commercial and private applications. 

 

● Python 2.7 was used for the primary application functionality due to the availability of 

open-source tools for data mining in Python 2. Python 3 was not chosen because 

none of the mainstream data mining tools we explored have been sufficiently 

developed to reach version 1.0 in Python 3 yet. 

● PDFMiner was a tool used to extract text from PDFs. It was chosen and used 

because of its compatibility with Python 2.7, length of use (it has been in 

development since 2004), and continued development. We did additional testing 

before integrating it to be sure it could parse PDF files correctly and with minimal 

errors and found it to be sufficiently functional with which to suit our needs. 

● BeautifulSoup was used for extracting data from web files, in conjunction with the 

HTML5Lib parser. These were a good fit with the Python 2.7 environment. This pair 

of tools were chosen for their ease of use and minimal dependencies. 

● The gensim library was chosen for the text comparison portion of this project based 

on its ongoing development, minimal dependencies, and primarily for its optimized 

implementation of many modern text comparison algorithms, such as Latent 

Semantic Analysis. 

● D3.js was implemented for creating the data visualization in response to the client’s 

suggestion, as well as being an appropriate and powerful JavaScript visualization 

library for Web implementations. 

● Ruby on Rails was chosen as the tool to use for the web interface because of the 

client’s interest in exploring this technology. 

 

Functionality Decisions 

● The PDF-to-text conversion tool was given its own script to convert PDFs into text 

files. The reason it is a standalone tool is because of the length of time it takes to 

run (which can be up to several hours) and because it only needs to be run when a 

model is changed or updated. This does allow for any model to be changed or 

updated with new or more PDFs, or for entirely new models to be added. 

● The visualization was designed to include responsive filtering with several filter 

criteria, allowing the user to view model scores, actual models, or guessed models. 

It appends all relevant data associated with a highlighted point in the table below the 

graph for further investigation. 



Lessons Learned 

● Machine learning and document similarity comparisons are nontrivial programming 

challenges. Performing each effectively requires a great deal of understanding and 

planning prior to writing the code. 

○ Requires understanding and appropriate use of transformation algorithms 

such as TF-IDF and Latent Semantic Indexing to generate useful models 

○ Large amounts of high quality data are required to produce more effective 

models. This data should ideally be very similar in structure and language to 

the unknown data that you are trying to classify 

○ More well defined models tend to have a higher average correlation with a 

given document of unknown classification. Therefore, in the case that some 

models are better defined than others, steps should be taken to normalize 

the various similarity scores to an extent. 

● Verify the accuracy of test data. Out of the 1150 sites we were given to use as test 

data, more than half were erroneous. Erroneous data was classified as such if trying 

to reach the URL linked by the client resulted in page not found or page not valid 

errors thrown by the servers they were supposedly stored on. Trying to compare 

sites and visualize data is impossible without appropriately handling corrupted 

testing data. 

● Filter results. We determined that many sites were returning financial or historical 

information about a given mining site, rather than information about the type of 

minerals contained within it. Because the text comparison utility we wrote makes a 

guess about which model a site is best represented by regardless of content, our 

correct guesses are hidden among useless or incorrect results. To handle this 

problem, we created a null model to catch results about financial and historical data, 

so that websites describing mineral deposits can be more accurately represented 

in our visualization. 

 

 

  



Results 
The primary goal of this project was to programmatically guess what types of 

mineral deposits websites describe. Guesses would be made by comparing websites to 

models composed of text derived from descriptions of deposits of interests. We were able 

to get every feature up and running, with varying degrees of accuracy. 

 

We wrote two separate text comparison tools. The first compares the text extracted 

from a website to each model directly, producing a coefficient of similarity. This tool 

analyzes these similarity coefficients to produce a guess for each site. At this time, it 

correctly identifies 83 of the 333 sites with known models. However, of the 333 known 

models, the null model also catches 106 sites. This means that of the valid guesses, 83 out 

of 227 are correct (or 37%). Additionally, of the known sites, nearly all sites with a similarity 

coefficient above a certain threshold (specific to each model) is correctly identified, 

whereas websites identified as certain geologic models that have similarity indices below 

that threshold tend to be miscategorized. When viewed with the visualization, what this data 

shows us is that the top guesses for each model tend to have a higher fraction of correct 

guesses than the mid to low range guesses produced for each model. 

 

The visualization makes it much more visually apparent that, as the standard 

deviation and simulation scores improve, so, too, do the results of our latent semantic 

indexing algorithm’s prediction accuracy. This is a promising piece of data supportive of 

the ability of the algorithm to associate Web sites with their appropriate deposit type that 

compare well.  The data tends to favor the most correct guesses with standard deviations 

above 0 and simulation index scores at or above 0.45.  Furthermore, data with standard 

deviations above 1.7 and simulation index scores above 0.53 are almost always correct. 

Knowing this threshold is pivotal when analyzing future data on unknown documents and 

determining if the algorithm appropriately guessed the deposit type. 

 

The separate text comparison tool was originally more exploratory by nature, but it 

operates as a learning algorithm and has led to promising results thus far. By making 

multiple passes through known data, it trains itself and modifies similarity weights of words 

and phrases in order to create a best fit model for the training data. Using a small selection 

of well defined sites, the algorithm was able to produce a best fit model that correctly 

recognized 95% of the sites it used as a training set. When the algorithm was run over the 

entire data set, it was able to create a best fit model correctly recognizing over 40% of the 

known sites. 

 

 

  



Future Work 

To improve the quality and accuracy of guesses, we suggest several possible 

routes. The most significant improvement will likely be made by simply improving and 

editing the text derived from PDFs manually, in order to more accurately describe the 

model the text is meant to match. This can have a huge impact because the PDF to text 

conversion utility is not 100% accurate, and because the PDF descriptions of deposit 

types are dissimilar from deposits described on websites. Where the PDF articles used 

describe deposit types from an academic standpoint, websites tend to be more geared 

toward investors or other persons who are not geologists. Improving models can be done 

intelligently by analyzing the topics and words that have the greatest impact on scores 

when a model is generated. 

 

To improve filter accuracy, the null model can be edited and further built upon. 

Currently, a very minimal approach has been taken to match financial or historical words to 

test the effectiveness of a null model, but it still lacks much depth. Every model benefits 

from being as large as possible, while still being able to describe the documents it is 

intended to catch. 

 

Another possible route that could lead to an improvement in model guessing is 

modifying the guessing logic itself. We have tried various permutations of guessing based 

on the similarity index (the score produced when a site is compared against a model, 

measures absolute similarity using a latent semantic indexing algorithm), including 

guessing based on the maximum, minimum, and average similarity indexes (Multiple 

similarity indices are produced for each comparison as a result of each model being 

composed of multiple documents. We chose to use the average because it gives better 

results than using either the minimum or maximum). We have gotten the best results so far 

(by a large margin) by guessing based on which model gives the highest standard 

deviation for a given site. 

  



Appendices 

Further information about the libraries used for this field session project can be found 

within the links below. 

 

● gensim: Topic modelling for humans 

http://radimrehurek.com/gensim/ 

Available under the GNU LGPL 

http://www.gnu.org/licenses/lgpl.html 

● BeautifulSoup 4: HTML and XML parser 

http://www.crummy.com/software/BeautifulSoup/ 

Available under the MIT License 

http://opensource.org/licenses/MIT 

● HTML5Lib: HTML parser and serializer 

https://github.com/html5lib/html5lib-python 

Available under the MIT License 

https://github.com/html5lib/html5lib-python/blob/master/LICENSE 

● PDFMiner: Python PDF parser and analyzer 

http://www.unixuser.org/~euske/python/pdfminer/ 

Available under the MIT/X License 

http://www.unixuser.org/~euske/python/pdfminer/#license 

● D3.js: Javascript library for manipulating documents based on data 

http://d3js.org/ 

Available under the BSD License 

http://opensource.org/licenses/BSD-3-Clause 

● Ruby on Rails: open-source web framework 

http://rubyonrails.org/ 

Available under the MIT License 

http://opensource.org/licenses/mit-license.php 

http://www.google.com/url?q=http%3A%2F%2Fradimrehurek.com%2Fgensim%2F&sa=D&sntz=1&usg=AFQjCNFdMG-b6KCfZc7XpULO0VP5FIE8Pw
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Flicenses%2Flgpl.html&sa=D&sntz=1&usg=AFQjCNFrFuCRexNZ16I3VHujLBWdbBg91g
http://www.google.com/url?q=http%3A%2F%2Fwww.crummy.com%2Fsoftware%2FBeautifulSoup%2F&sa=D&sntz=1&usg=AFQjCNHG_jrlLUcKe_OXToO3kMM5eF3JeQ
http://www.google.com/url?q=http%3A%2F%2Fopensource.org%2Flicenses%2FMIT&sa=D&sntz=1&usg=AFQjCNHDbo7qf6bLsFB0hul9yFpGyirUdg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fhtml5lib%2Fhtml5lib-python&sa=D&sntz=1&usg=AFQjCNF-XxQCKpvPNzIfHWfwoCxHuTvpcA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fhtml5lib%2Fhtml5lib-python&sa=D&sntz=1&usg=AFQjCNF-XxQCKpvPNzIfHWfwoCxHuTvpcA
https://github.com/html5lib/html5lib-python
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fhtml5lib%2Fhtml5lib-python%2Fblob%2Fmaster%2FLICENSE&sa=D&sntz=1&usg=AFQjCNHPSjDeosLAfZeY326XtDvHHbeKyQ
http://www.google.com/url?q=http%3A%2F%2Fwww.unixuser.org%2F~euske%2Fpython%2Fpdfminer%2F&sa=D&sntz=1&usg=AFQjCNEgJAocbVmi8EytwbMDPYmX68jYKg
http://www.google.com/url?q=http%3A%2F%2Fwww.unixuser.org%2F~euske%2Fpython%2Fpdfminer%2F%23license&sa=D&sntz=1&usg=AFQjCNEC2O86VN-0WETxwTmfADJek1CyEQ
http://www.google.com/url?q=http%3A%2F%2Fd3js.org%2F&sa=D&sntz=1&usg=AFQjCNGRDjOIx27VEdt3kwBvGqXUgHgu7A
http://www.google.com/url?q=http%3A%2F%2Fopensource.org%2Flicenses%2FBSD-3-Clause&sa=D&sntz=1&usg=AFQjCNF8xr-Ufj59l2FMafgwqkBeBoRWww
http://www.google.com/url?q=http%3A%2F%2Frubyonrails.org%2F&sa=D&sntz=1&usg=AFQjCNF7Cc02U9OAo_hiAxFGoYPao3MLyQ
http://www.google.com/url?q=http%3A%2F%2Frubyonrails.org%2F&sa=D&sntz=1&usg=AFQjCNF7Cc02U9OAo_hiAxFGoYPao3MLyQ
http://rubyonrails.org/
http://www.google.com/url?q=http%3A%2F%2Fopensource.org%2Flicenses%2Fmit-license.php&sa=D&sntz=1&usg=AFQjCNH7gNG0EHFGM1Fz99J0Q2UsDKAgZg

