

Dawa Sherpa, Jesse Weaver, Taylor Schmidt

ByWater Solutions

June 24, 2014

CSM Field Session 2014 - ByWater Solutions - Final Report

2

Table of Contents:

Introduction………………………………………………………………………… 4

Product Description (Koha)

Client Description

Product Vision

Requirements……………………………………………………………………... 5

Functional Requirements

Non-Functional Requirements

System Architecture………………………………………………………………. 6

High Level Design

figure 1.1

Detail Design

Technical Design…………………………………………………………………. 8

AngularJS

figure 1.2

figure 1.3

figure 1.4

figure 1.5

Design & Implementation Decisions/Lessons Learned………………………. 11

Results……………………………………………………………………………. 12

Appendix A: Product Installation Instructions…………………………………...13

Appendix B: Coding Guidelines…………………………………………………. 14

Complete coding guidelines:

Appendix C: Acceptance Tests…………………………………………………. 16

References………………………………………………………………………. 18

CSM Field Session 2014 - ByWater Solutions - Final Report

3

Introduction

Product Description (Koha)

Koha is the world’s first open source Integrated Library System (ILS), software used by

libraries to manage their patrons and collections. It is in use worldwide, and its

development is driven by the libraries themselves. Since its inception in 1999, Koha has

been expanding to meet the needs of its ever growing client base. It includes many

useful features central to library operation including circulation, cataloging, acquisitions,

serials, reserves, patron management, branch relationships, and more.

Client Description

ByWater Solutions was created in 2008 as a Koha support and implementation

company. ByWater is actively involved in the Koha community and offer many services

dealing with the ILS. These include support tasks dealing with technical consulting, bug

fixes, and Koha customization to meet the needs of specific libraries. ByWater also

deals with installation and data migration for libraries switching over to the Koha system,

as well as training to help libraries learn to use the ILS. Lastly, ByWater Solutions is

also heavily involved in the development of Koha’s open source software, and are major

contributors to the worldwide Koha community. ByWater Solutions currently employs a

staff of 15 people, and has expanded to a partner base of over 800 libraries, making

them one of the largest Koha service providers in the world.

Product Vision

Develop a RESTful API along with front-end AJAX web application to expose this API

for the open source ILS known as Koha. The web application should make use of the

AngularJS framework to dynamically load information. The product created will

specifically deal with Koha’s circulation tasks associated with the checkin/checkout of

items within the library. During this project, a nearly complete checkout interface and

API will be implemented at a minimum, with as much of the rest being implemented as

time permits. It is hoped that the beginnings of this project will eventually replace the

current interfaces and back-end structure within Koha.

CSM Field Session 2014 - ByWater Solutions - Final Report

4

Requirements

Functional Requirements

● Web Service API:

○ Querying all relevant information about bibs (bibliographic records), their

items, and borrowers, including holds, fines, checkouts, and personal

information

○ Checking out, checking in, renewing and placing holds on items

○ Checking in items while forgiving fines

○ Paying fines and renewing expired borrowers

○ Correctly transfers items between libraries if needed

○ Does all of the above while respecting circulation rules and limits, lost

statuses and existing holds

○ Not specific to the needs of the frontend, intended as a generic API

○ Complete unit-test suite

● Front end:

○ Exposes the above functionality through a web-based AJAX interface

○ Displays warnings and errors to users while supporting internationalization

○ Plays alert sounds

○ Can print receipts (common receipt printers function easily with browsers)

Non-Functional Requirements

● RESTful HTTP API.

● Uses AngularJS.

● Can be integrated into existing Koha code base.

● Uses Git version control to eventually merge the project with the master branch

of Koha

CSM Field Session 2014 - ByWater Solutions - Final Report

5

System Architecture

High Level Design

Our system involves the interaction of library staff and the Koha database for circulating

items within the library. The library staff will interact directly with Koha through a web

browser. Any actions taken by this person will be transferred through AJAX calls via the

internet, sending requests to our API. Our API will then handle these requests,

retrieving and/or updating any relevant information in the library’s Koha database. After

this interaction occurs, The API sends back the information to the browser, which

updates the user interface accordingly.

figure 1.1

Detail Design

Database:

Our project interacts with the existing Koha

SQL database, which holds all of the

information needed by a library, including

item information and patron information, as

well as all of the circulation tasks that have

taken place.

API:

Our circulation API is divided into two

modules entitled Patrons and Items. The

API is organized this way because

circulation functions in a library either occur

on a patron specific basis or on an item

specific basis. This division ensures the API

will be RESTful in interfacing with the front

end, extremely modular, and easily

expandable in the future if additions and/or

modifications need to be made.

API calls for tasks such as checking out items, placing holds, and paying fines will

always be accompanied by information for a specific library patron. These tasks are

CSM Field Session 2014 - ByWater Solutions - Final Report

6

intrinsically connected to a patron, so it made the most sense to place them within a

patron module.

All other circulation tasks within a library are specific to individual items. These include

checking an item in, adding new items, and making modifications to items’ statuses.

These tasks within the API will always need to be called with an item number.

Front-end:

The front-end we worked on is composed of two separate web applications. One deals

with the checkout of items, and the other deals with checkins. Both of these pages are

meant to replace their respective existing interfaces in Koha. These applications display

their information using the AngularJS framework in order to update and display

elements dynamically instead of reloading the entire page when information needs to be

updated. This allows the page to work in a fast and efficient manner, especially when

dealing with large amounts of information. Both of these applications use RESTful AJAX

calls to communicate with our newly created API which handles the retrieval and

updating of the database information.

CSM Field Session 2014 - ByWater Solutions - Final Report

7

Technical Design

AngularJS

One of the suggestions made by our client for this project was the use of the AngularJS

Javascript framework. This framework provides a very straightforward way of

dynamically updating web pages one element at a time, without reloading the entirety of

content. This is especially useful in the context of Koha, as library staff can experience

somewhat large wait times when trying to update or view a large amount of data in the

application. With AngularJS integrated into the User Interfaces (UI), large amounts of

information will no longer need to be passed between the client and server, reducing

client side wait time dramatically in some cases.

AngularJS works by binding HTML elements on a web page with variables and

functions defined in Angular “controllers” within Javascript elements. Our controller

communicates with our back-end API to retrieve all the necessary information regarding

things such as the checkins and checkouts needing to be displayed by the application.

Our controller will then update data in HTML elements using directives defined by

Angular, communicating with the HTML, telling it what to display and taking in

information it needs. This is all done in real time, with no pause or reloading of the URL,

making it very streamlined and efficient. Below is an example of a generic Angular setup

where variables and functions are linked to specific HTML elements by the controller.

figure 1.2

To control the HTML, AngularJS comes with a large

set of very useful features which can be easily

integrated into any webpage. This was especially

useful in our case because we needed to modify an

existing interface to look and act the same as the

previous version, but operate far more efficiently

behind the scenes. This was done by only modifying

HTML tags with AngularJS directives to either hide

or show the entire element based on a variable or

the result of a function. AngularJS also allowed us to

capture form data and store it directly into variables

within the controller. Using this approach, we were able to keep most of the existing

code for each page, adding in our own modifications as needed. Below are a few direct

CSM Field Session 2014 - ByWater Solutions - Final Report

8

code examples from our project to demonstrate Angular’s integration into our web

application.

This code snippet from our project is a good example of one of Angular’s directives

known as “ng-show”. This is a commonly used directive to dynamically display or hide

an HTML element based on a boolean variable set within the controller, dictated by

information received from the API.

figure 1.3

This next code snippet shows how controller variables can be directly inserted into

HTML using syntax unique to AngularJS. When a variable is encapsulated in curly

braces, like {{variable}}, AngularJS knows to display that variables value

dynamically in the web application, allowing it to be easily changed, without any HTML

modification.

figure 1.4

The final code example from our project shows Angular’s ability to easily bind HTML

forms to functions within the controller. This is done using the “ng-model” directive to

bind an input field to a variable, and then the “ng-submit” directive is used to call a

function within the controller when the form is submitted. In our case, the function called

will send an AJAX “POST” command to our API.

figure 1.5

CSM Field Session 2014 - ByWater Solutions - Final Report

9

For this project, AngularJS proved to be a very powerful tool. In most cases, a web

application would need to experience a complete overhaul in order to incorporate a new

framework or to see any extreme increases in efficiency. With AngularJS, most of the

original web code was kept, we only needed to add in the appropriate directives and

bind the necessary variables in order to interface with our newly created API. In many

cases, we were able to actually simplify the existing Koha code. AngularJS was the

technical design decision which made the most impact on our project, allowing us to

overhaul Koha’s circulation client in a relatively short period of time.

Design & Implementation Decisions/Lessons Learned

● The use of the AngularJS framework for this project was one of the better design

decisions we could have made. Angular’s built in directives and functionality

allowed us to easily convert Koha’s old circulation UI without a total overhaul of

the code. This allowed us to easily create a front-end which would dynamically

load content, while maintaining the same look and functionality as the previous

pages. AngularJS also allowed us to easily connect the front-end with our newly

CSM Field Session 2014 - ByWater Solutions - Final Report

10

created API by using functions within Angular to send AJAX calls using data lifted

directly from the web application.

● Creating a RESTful API proved to be a very useful way to structure our code, as

our newly created services are structured like actual resources. This ended up as

a very modular and expandable API, greatly improving on the previous

codebase.

● When interfacing directly with the Koha database, we found that using Perl’s

DBIx::Class object-relational mapper was very helpful. This allowed us to retrieve

and/or update information in the Koha database without actually writing raw SQL

commands. This sped up development time tremendously.

● In trying to overhaul the front-end web application of Koha’s circulation UI, we

attempted to integrate AngularJS with the DataTables JS library currently used in

Koha. After wasting an entire day trying to mix the two together, we determined

that the task was an impossible one, and had to scrap a large portion of the code

we had written. Researching this problem after the fact led us to find out that

many had attempted to integrate DataTables with other frameworks and libraries

to no avail, concluding it to be an insurmountable task due to compatibility

issues. In the future, we have now learned to thoroughly research a problem in

its early stages before trying to push through it, only to realize success is not

possible.

● Working with a group of three for the entirety of our project led to a fair amount of

improvisation for some of the Agile and Scrum mentalities. Instead of pair

programming with an odd man out, we experimented with Triplet programming

throughout the project. This turned out to be very successful, leading to some

interesting group dynamics when coding. Two members would take on the

classic roles of a pair programming duo who are focused on the task at hand,

while the third member would almost act as an overseer, catching syntax and

coding errors.

Results

The initial goal for this project was to create a Restful API for the Koha circulation client,
to be exposed using an AngularJs web application with AJAX calls. This included both
the checkout and checkin interfaces for items in the library. Our main objective was to
get the checkout functionality in as complete of state as possible, and then move on to
the checkin interface as time allowed.

CSM Field Session 2014 - ByWater Solutions - Final Report

11

So far, we have completed as much functionality as possible for the checkout API and
front end using AngularJs. Our Interface implements around 95% of the features of the
old checkout interface while making it more streamlined and dynamic so that pieces can
be updated individually without reloading the entire page.

We have also made a good dent in the checkin interface and subsequent API. Koha is
used by thousands of libraries worldwide. If our code is implemented into the system,
and an update is released, librarians will have the option to use the original
checkout/checkin clients developed for the integrated library system, or our AngularJS
version.

Our API has been subjected to unit tests throughout every step of development to
ensure that every component is working correctly. Our frontend has also been
extensively tested using both Firefox and Chrome to ensure that it is functional in all
browsers specified as compatible with the Koha system. We have had a first look into
the future of Koha, Angular

Within the next few years, we hope to see Koha grow more dynamic, in order to
improve processing times for library circulation. Hopefully, the introduction of AngularJS
will allow for the addition of more single-page applications, which will make loading
pages faster and simpler. It would also be nice to see our checkin/checkout screens
fully developed and being used within the Koha community.

CSM Field Session 2014 - ByWater Solutions - Final Report

12

Appendix A: Product Installation Instructions

Koha Requirements

To install Koha for immediate use we recommend

● A Linux server – Debian is what most people use

● Apache

● MySQL

● Perl

● Root access to the server

● A better than average level of skill with the command line, Apache, and MySQL

tools

Koha is free software and is licensed under the GNU General Public License, either

version 3 of the License, or (at your option) any later version

Get Koha

There are often two versions of Koha being released here during the same period of

time. See the release schedule (http://koha-community.org/about/release-schedule/) for

more information.

Current Release

Debian packages are available – Instructions here (http://wiki.koha-

community.org/wiki/Debian)

Ubuntu users can use the packages as well by following these instructions:

(http://wiki.koha-community.org/wiki/Koha_on_ubuntu_-_packages)

From download.koha-community.org Not recommended, use Debian/Ubuntu

packages – Current Stable Release (.tar.gz) (http://download.koha-community.org/koha-

latest.tar.gz)

Install Koha

Once you have downloaded Koha, please unpack it and find the installation and

upgrade instructions in the INSTALL file for your system, or the general INSTALL file.

http://www.debian.org/
http://www.debian.org/
http://www.apache.org/
http://www.mysql.com/
http://www.perl.org/
http://koha-community.org/about/release-schedule/
http://koha-community.org/about/release-schedule/
http://wiki.koha-community.org/wiki/Debian
http://wiki.koha-community.org/wiki/Debian
http://wiki.koha-community.org/wiki/Debian
http://wiki.koha-community.org/wiki/Koha_on_ubuntu_-_packages
http://wiki.koha-community.org/wiki/Koha_on_ubuntu_-_packages
http://download.koha-community.org/koha-latest.tar.gz
http://download.koha-community.org/koha-latest.tar.gz

CSM Field Session 2014 - ByWater Solutions - Final Report

13

Appendix B: Coding Guidelines
General rule: if you submit code that fixes existing code that violates those guidelines,

QA can still be passed. You don't have to fix everything. If you want to fix more than just

your fix, to respect current guidelines, you're welcomed of course. But in this case,

please do it in a 2nd patch, to have reviewers being able to distinguish easily what's

related to your bugfix and what is related to your guidelines-violation fixing.

Example: you submit a patch that does not respect perlcritic after applying the patch.

The QA team will check for perlcritic after your patch, and if the patch does not add a

new perlcritic violation, it's OK.

Licence

Each file (scripts & modules) must include the GPL licence statement, typically at the

top.

This file is part of Koha.

Copyright (C) YEAR YOURNAME-OR-YOUREMPLOYER

Koha is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 3 of the License, or

(at your option) any later version.

Koha is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with Koha; if not, see <http://www.gnu.org/licenses>.

Commit messages

When you submit code to the project (using Git) please write useful commit messages.

Detailed guidelines on writing commit messages can be found at the wiki page on

Commit messages (http://wiki.koha-community.org/wiki/Commit_messages).

Refactoring code

Don't needlessly refactor code, if it ain't broke, don't fix it! Don't waste time on

changing style from someone else's style to yours! If you must refactor, make sure that

the commit for the refactoring is completely separate from a bugfix.

http://wiki.koha-community.org/wiki/Commit_messages
http://wiki.koha-community.org/wiki/Commit_messages
http://wiki.koha-community.org/wiki/Commit_messages

CSM Field Session 2014 - ByWater Solutions - Final Report

14

Bug Numbers

Contributors to Koha must reference a bug number with every commit. This helps us

determine the purpose of the commit and establishes a more searchable and

understandable history. If there is no bug open at bugs.koha-community.org that

addresses your contribution, please open one and describe the bug or enhancement.

Then, include Bug + the bug number at the beginning of your commit message and set

the "Status" field to "Needs Signoff". This helps us keep track of patches that have been

contributed but not yet applied.

It is also requested that you attach the patch file to the bug report. This allows others

not on the patches list to pull in your code, test, and sign-off. You can use git bz for that.

Complete coding guidelines:

http://wiki.koha-community.org/wiki/Coding_Guidelines

http://bugs.koha-community.org/
http://bugs.koha-community.org/

CSM Field Session 2014 - ByWater Solutions - Final Report

15

Appendix C: Acceptance Tests

Koha Revision Control Overview for RMs

Applying Patches

Ok, the release manager has received some patches and wants to apply them.

Git also provides a tool called git-am (am stands for "apply mailbox"), for importing such

an emailed series of patches. Just save all of the patch-containing messages, in order,

into a single mailbox file, say "patches.mbox", then run

$ git am -3 -i -s -u patches.mbox

Git will apply each patch in order; if any conflicts are found, it will stop, and you can fix

the conflicts as described in "Resolving a merge". (The "-3" option tells git to perform a

merge; if you would prefer it just to abort and leave your tree and index untouched, you

may omit that option.)

Once the index is updated with the results of the conflict resolution, instead of creating a

new commit, just run

$ git am --resolved

and git will create the commit for you and continue applying the remaining patches from

the mailbox.

The final result will be a series of commits, one for each patch in the original mailbox,

with authorship and commit log message each taken from the message containing each

patch.

Pushing changes to a public repository

Now they want to update the public repository so the rest of the world can get the new code.

The simplest way to do this is using git-push and ssh; to update the remote branch named

"master" with the latest state of your branch named "master", run

$ git push ssh://yourserver.com/~you/proj.git master:master

or just

$ git push ssh://yourserver.com/~you/proj.git master

As with git-fetch, git-push will complain if this does not result in a fast forward. Normally this is a

sign of something wrong. However, if you are sure you know what you're doing, you may force

git-push to perform the update anyway by proceeding the branch name by a plus sign:

$ git push ssh://yourserver.com/~you/proj.git +master

CSM Field Session 2014 - ByWater Solutions - Final Report

16

Note that the target of a "push" is normally a bare repository. You can also push to a repository

that has a checked-out working tree, but the working tree will not be updated by the push. This

may lead to unexpected results if the branch you push to is the currently checked-out branch!

As with git-fetch, you may also set up configuration options to save typing; so, for example, after

$ cat >>.git/config <<EOF

[remote "public-repo"]

 url = ssh://yourserver.com/~you/proj.git

EOF

you should be able to perform the above push with just

$ git push public-repo master

See the explanations of the remote.<name>.url, branch.<name>.remote, and

remote.<name>.push options in git-config for details.

Koha Revision Control Overview for QA Manager

The QA manager will receive patches and will want to either apply them and then push

them upstream to the RM's repo or escalate the patch for the RM to view.

Dealing with Patches

The QA manager needs to check if the patch is a bugfix or a new feature. If it is a bugfix they

then need to check that it confirms to the coding guidelines. If it does they can then apply the

patch (the same way as the RM does). Then they do a git-push to push this back to the RM's

repository. If they are new features, the QA Manager will forward them to the Release Manager

to look at.

For example

● Check mail

● Look at new patch email, its a bug fix, looks good, save to a file to_apply

● git-am to_apply

● git push

● Let the RM know.

OR

- Check mail

 - Look at new patch email, ooh a neat new feature, forward to RM Manager

http://www.kernel.org/pub/software/scm/git/docs/git-config.html

CSM Field Session 2014 - ByWater Solutions - Final Report

17

References

appendix a: http://koha-community.org/download-koha/

appendix b: http://wiki.koha-community.org/wiki/Coding_Guidelines

appendix c: http://wiki.koha-community.org/wiki/Version_Control_Using_Git

http://koha-community.org/download-koha/
http://wiki.koha-community.org/wiki/Coding_Guidelines
http://wiki.koha-community.org/wiki/Version_Control_Using_Git

