
	 1	

Final Report

Team: JD Baugher, Austin Thompson, Tyler Thrailkill, Grant Walker
Client: Nimbee

06/13/13

	 2	

Introduction

The members of the Boulder-based startup Nimbee have found great success in the
educational field with their previous startup, Kerpoof. The now hugely successful website was
created in 2006 to help children create and learn in a safe online environment. After two years
and an incredible rise in monthly traffic, the website was purchased by Disney in 2009 and
remains a popular tool for teachers all over the world. Despite their success, Nimbee presents yet
another opportunity for the talented team members to create an award-winning educational tool.

Teachers need methods for real-time, interactive lectures which can be delivered on a
variety of platforms, similar to Khan Academy instructional videos. Teaching fractions to middle
school students is infamously difficult and the problem still does not have a satisfactory solution.
Nimbee is focused upon solving this problem with their next product. They have begun work on
an application called Woot Math, with a planned release on Web, iOS, and Android. Woot Math
is designed to help teach students fractions and other mathematical concepts using tactile, visual
feedback for each problem. Woot Math will not only help students by aiding in the visualization
of fractions, it will also recognize and process their handwritten equations. Nimbee has requested
that we assist them in their Woot Math project by developing a framework for saving and
evaluating this handwritten user data.

Students need an intuitive method of inputting equations that provides them with instant
feedback. The goal is to design a framework that supports segmentation of a handwritten
equation into individual symbols and returns a solution to the equation. The stroke data and
bitmap image, gathered from the application, should be segmented into single characters. This
data is then sent to a database for future updates to the Optical Character Recognition (OCR)
engine’s knowledge base. In addition, the segmented data should be sent to an interchangeable
OCR black box to be analyzed. The results of the OCR engine will be combined into a single
term, evaluated on the host machine, and printed to the screen of the application.

Functional Requirements

Segmentation and Analysis
o Accept user’s handwritten input

§ Support digits, mathematical symbols and simple fractions
§ Single expression written on a single line only

o Split the input into bitmaps encompassing each component (a digit, an operator,
etc) of the expression

o Send the segmented data to an OCR black box in the correct order
o Accept the values returned by the OCR
o Evaluate the expression and return a result

Storage
o Bitmaps for each expression are component time-stamped and stored in S3

storage
o Store the filename of the bitmap and corresponding stroke data in an Elastic

Compute Cloud (EC2) database

	 3	

User Interface
o Display a screen with the following:

§ Drawing canvas
§ Send button
§ Clear button
§ System status

• Display current state (eg., “Sending data...”)
• Display values returned by OCR and result of the expression

Stretch Goals
o Segmentation of complex fractions
o Splash screen

Non-Functional Requirements

Tools
o C++ for handwriting analysis in a Java/Objective C wrapper, allowing it to run on

Android or iOS
o VM development using Vagrant and Chef
o Supported platforms: Android, iOS, and Web
o Using GitHub for source control
o Ruby/Sinatra routing to AWS platform for database storage and recall.
o AWS Server
o MongoDB for storing JSON blobs
o Node.js for front-end web application
o Code must work with the existing application (Woot Math)

Performance
o Must segment equations into three categories: digits, symbols, and fractions
o OCR must interpret segments but doesn’t need to be accurate
o The equation analysis must perfectly evaluate the OCR output
o All of the above should happen without noticeable delay

	 4	

Technical Design
	
Segmentation	
	 Segmentation	 is	 the	 process	 of	 taking	 an	 image	 and	 splitting	 it	 into	 an	 ordered	 array	 of	
sub-‐images.	 Each	 sub-‐image	 represents	 the	 atomic	 symbols	 that	 can	 be	 recognized	 by	 the	
Optical	 Character	 Recognition	 (OCR)	 engine.	 Segmentation	 can	 be	 placed	 into	 two	 categories:	
online	 and	 offline.	 Online	 data	 utilizes	 the	 time	 and	 path	 of	 the	 strokes,	 while	 offline	 data	 looks	
at	 a	 static	 image.	 These	 methods	 can	 be	 used	 together	 or	 individually.	 Though	 we	 had	 access	 to	
both,	 we	 chose	 to	 use	 offline	 data.	
	 Our	 segmentation	 algorithm	 uses	 the	 bitmap	 supplied	 from	 the	 client	 as	 well	 as	 the	
stroke	 data	 from	 pen	 movement.	 The	 stroke	 data	 is	 a	 2D	 array.	 Each	 sub-‐array	 consists	 of	 point	
data	 in	 the	 format	 [x_location0,	 y_location0,	 time0,	 …,	 x_locationn,	 y_locationn,	 timen].	 Though	
the	 strokes	 may	 look	 continuous	 on	 the	 client,	 each	 point	 in	 stroke	 is	 actually	 the	 vertex	 of	 a	
linear	 polygon.	 A	 line	 is	 drawn	 between	 the	 x/y	 coordinates	 of	 adjacent	 points	 in	 the	 stroke	
array.	
	 In	 our	 first	 attempt	 at	 creating	 a	 segmentation	 algorithm,	 we	 looked	 at	 several	 papers	
and	 tried	 to	 implement	 a	 few	 simple	 algorithms.	 We	 first	 categorized	 symbols	 into	 three	
groups:	

• Multi-‐stroke	 Symbols:	 	 +,	 =,	 x,	 ÷	
• Simple	 Fractions:	 	 ½	 ,	 ¼	 ,	 12/13	
• Simple	 Symbols:	 1,	 2,	 3,	 /,	 -‐,	 (,),	 .	

For	 all	 three	 groups	 we	 used	 the	 online	 data	 for	 quick	 	
analysis.	 We	 started	 by	 calculating	 the	 bounding	 box	 and	
centroid	 for	 each	 stroke.	 The	 bounding	 box	 for	 a	 stroke	
was	 determined	 by	 the	 minimum	 and	 maximum	 x/y	
coordinates	 in	 the	 stroke.	 The	 centroid	 was	 calculated	 by	
calculating	 the	 centroid	 of	 the	 lines,	 drawn	 between	 each	 adjacent	 point,	
and	 taking	 a	 weighted	 average.	 As	 a	 result,	 the	 centroid	 of	 a	 stroke	 was	 not	 the	 centroid	 of	 its	
bounding	 box	 and	 was	 not	 affected	 by	 any	 other	 stroke.	

	
	 	

The	 algorithm	 first	 checks	 for	 complex	
symbols	 first,	 then	 moves	 to	 simple	 symbols.	
The	 initial	 check	 is	 for	 multi-‐stroke	 symbols.	 To	
find	 these	 symbols,	 we	 looked	 for	 overlaps	
between	 bounding	 boxes.	 	
	
	
	
	 	

	
	

	 5	

	 If	 they	 cross,	 we	 combine	 the	 strokes	 into	
a	 single	 stroke	 array	 and	 find	 its	 new	 bounding	
box.	 If	 the	 character	 is	 not	 a	 multi-‐stoke	 symbol,	
we	 check	 to	 see	 if	 a	 fraction	 is	 formed.	 We	
determined	 that	 there	 is	 a	 simple	 fraction	 if	 the	
centroids	 of	 two	 or	 more	 strokes	 create	 a	 best-‐fit	
line	 with	 an	 absolute	 angle	 greater	 than	 60	 .̊	
Once	 a	 fraction	 is	 determined,	 the	 strokes	
comprising	 it	 are	 joined	 into	 a	 single	 stroke.	 All	
remaining	 strokes	 are	 considered	 atomic	 and	
sent	 to	 the	 OCR.	
	 We	 had	 specific	 criteria	 to	 meet	 for	 the	 segmentation	 portion	 of	 this	 project.	 Our	 scope	
is	 limited	 and	 thus	 does	 not	 cover	 all	 cases.	 Here	 is	 a	 short	 list	 of	 what	 the	 segmentation	
algorithm	 was	 and	 was	 not	 required	 to	 do:	

Required	 Not	 Required	
Segment	 digits	 [0-‐9]	 Complex	 fractions	 [!!!

!
	 …]	

Segment	 simple	 fractions	 [½	 …]	 Overlapping	 symbols	
Segment	 symbols	 [+,-‐,x,=]	 Multiple	 equations	
	 The	 algorithm	 described	 above	 was	 able	 to	 meet	 all	 of	 the	 required	 criteria	 above	 but	
had	 several	 major	 flaws.	 Since	 the	 stroke	 data	 was	 based	 on	 time,	 if	 a	 user	 wanted	 to	 go	 back	
and	 change	 something,	 it	 would	 completely	 mess	 up	 the	 algorithm.	 The	 bounding	 boxes	 made	
the	 writer’s	 freedom	 very	 limited.	 Not	 only	 could	 the	 physical	 lines	 not	 cross	 but	 the	 boxes	
drawn	 around	 them	 could	 not	 cross	 either.	 In	 addition,	 the	 algorithm	 was	 not	 extendable.	
Complex	 fractions	 could	 not	 be	 achieved	 with	 this	 method	 and	 sometimes	 simple	 fractions,	
such	 as	 !!

!!"
,	 would	 fail	 because	 the	 centroids	 did	 not	 form	 a	 well-‐defined	 line.	 Even	 if	 the	

algorithm	 were	 lucky	 enough	 to	 get	 a	 complex	 fraction,	 it	 would	 not	 be	 possible	 to	 determine	 a	
fraction	 over	 a	 fraction.	 The	 final	 nail	 in	 the	 coffin	 was	 the	 fact	 that	 we	 were	 sending	 the	 OCR	 a	
simple	 faction	 as	 an	 atomic	 symbol,	 instead	 of	 the	 symbols	 comprising	 the	 fraction.	 This	 was	 a	
major	 flaw	 because	 the	 OCR	 could	 not	 interpret	 fractions	 and	 if	 it	 could,	 the	 internal	
segmentation	 in	 the	 OCR	 engine	 would	 make	 our	 pre-‐segmentation	 pointless.	 	
	 It	 was	 time	 for	 a	 new	 approach.	 Another	 method	 we	 considered	 was	 to	 make	 an	 outline	
of	 each	 symbol.	 This	 method	 was	 rather	 complex	 and	 would	 have	 required	 a	 significant	
increase	 in	 time	 to	 process.	 The	 outlining	 algorithm	 works	 by	 analyzing	 each	 column	 of	 the	
bitmap.	 When	 a	 string	 of	 colored	 pixels	 is	 found	 it	 compares	 it	 to	 the	 previous	 column’s	 pixels.	
If	 they	 are	 adjacent,	 they	 are	 part	 of	 the	 same	 symbol.	 Should	 there	 only	 be	 white	 space	
following	 colored	 pixels,	 the	 symbol	 is	 complete.	 Each	 symbol,	 in	 this	 case,	 is	 made	 up	 of	 a	 2D	
array	 of	 pixels.	 The	 pixels	 were	 then	 reconstructed	 onto	 a	 blank	 bitmap	 and	 sent	 to	 the	 OCR.	 	
	 While	 the	 outline	 of	 each	 symbol	 removed	 the	 bounding	 box	 issue	 and	 made	 OCR	
interpretation	 more	 accurate,	 it	 presented	 many	 more	 problems.	 Due	 to	 the	 horizontal	
movement	 of	 the	 algorithm,	 the	 correct	 ordering	 of	 the	 symbols	 was	 lost	 if	 a	 fraction	 or	
complex	 fraction	 was	 present.	 Also,	 complex	 symbols	 that	 did	 not	 overlap,	 such	 as	 ‘=’	 and	 ‘÷’,	
could	 not	 be	 combined	 into	 a	 single	 symbol.	 	

	 6	

 	
Our	 final	 solution	 addressed	 many	 of	 the	 problems	 and	 was	 even	 able	 to	 hit	 some	 of	 the	

stretch	 goals.	 In	 our	 final	 implementation,	 we	 took	 the	 best	 of	 both	 worlds.	 The	 gap	 algorithm	
we	 used	 is	 an	 offline	 recursive	 algorithm.	 It	 starts	 by	 scanning	 the	 bitmap	 horizontally.	 Each	
column	 is	 inspected	 for	 a	 colored	 pixel.	 Should	 white	 space	 exist	 between	 column(s)	 of	 non-‐
white	 pixels,	 then	 there	 must	 be	 at	 least	 one	 symbol	 there.	 This	 repeats	 to	 the	 end	 of	 the	
bitmap.	 An	 array	 of	 sub-‐images,	 cropped	 from	 the	 bitmap	 at	 changes	 in	 white	 space,	 is	 created.	
The	 scanning	 algorithm	 is	 then	 called	 on	 each	 sub-‐image.	 This	 time	 the	 scanning	 occurs	
vertically	 across	 rows.	 This	 repeats,	 flipping	 rows/cols,	 until	 only	 a	 single	 sub-‐image	 is	 cropped	
in	 the	 vertical	 scan.	
	 	

	
The	 result	 is	 an	 ordered	 set	 of	 atomic	 symbols.	 Though	 the	 user	 is	 still	 restricted	 due	 to	

the	 bounding	 box	 effect,	 we	 have	 opened	 the	 segmentation	 up	 to	 extension.	 Since	 the	 bitmap	
is	 static,	 the	 user	 is	 not	 bound	 by	 time	 and	 may	 freely	 go	 back	 and	 edit	 the	 equation.	
Additionally,	 the	 vertical	 scan	 gave	 us	 additional	 knowledge	 about	 the	 symbols	 being	 written.	 	

	 7	

We	 were	 able	 to	 determine	 if	 a	 multi-‐stroke	 symbol	 was	 a	 fraction	 or	 ‘=’	 sign.	 By	
knowing	 a	 fraction	 was	 written,	 we	 could	 anticipate	 it	 for	 evaluation.	 Thus,	 we	 could	 send	 the	
OCR	 the	 numerator	 and	 denominator	 and	 let	 the	 evaluation	 take	 care	 of	 the	 division	 symbol.	
As	 an	 added	 bonus,	 the	 recursive	 nature	 of	 this	 algorithm	 let	 us	 create	 very	 complex	 fractions	
like	 the	 following:	

	

!!
!"!!
!
!"×!

!!

!
!!!

	

	
Conclusion?
	 Overall,	 this	 segmentation	 is	 the	 best	 approach	 to	 the	 problem	 and	 gave	 us	 the	 best	
results.	 The	 down	 side	 to	 this	 algorithm	 is	 the	 lack	 of	 freedom	 on	 the	 user’s	 part.	 However,	 the	
code	 for	 using	 online	 data	 and	 outlining	 is	 still	 in	 the	 application.	 This	 algorithm	 can	 ultimately	
be	 extended	 and	 improved	 with	 the	 addition	 of	 these	 other	 methods.	 By	 accomplishing	 the	
assigned	 goals,	 achieving	 some	 of	 the	 stretch	 goals,	 and	 allowing	 further	 stretch	 goals	 to	 be	
made;	 we	 believe	 that	 we	 have	 met	 the	 criteria	 for	 a	 good	 algorithm.	
	
System Architecture

	 8	

Design

 Specifications

The problem associated with implementing such technology is the need for a consistent,
accurate, and efficient OCR engine that ideally executes as the student writes. Regardless of
whether offline or online recognition is used, the program needs to capture input information,
accurately interpret it, and evaluate the expression if possible. Handwritten data coming from the
client-side digit recognition applications is stored in straight blobs, which includes bitmap data
and stroke data. The OCR engine then analyzes the data locally and returns an interpreted
expression.

The program will also need to send packets of the information it receives. Using Amazon
Web Services (AWS), the collected stroke data will be stored in EC2 and the bitmap will be
stored in an S3 storage system. The database provides information to the handwriting recognition
software, tailoring its recognition of individual users’ handwriting. This data will be retrieved
when the knowledge base for the OCR algorithm is being updated.

 Usage

This addition to the program is important for both teachers and students. It will allow
students to work intuitively when solving problems. Since the text will be uniform once
converted, a teacher viewing the student’s progress can easily and accurately follow the student’s
work flow. If a teacher creates a hint or solution to the problem, students can have a better
understanding of the material covered. Finally, the training data gathered from user input can be
used to train the recognition algorithm and further advance the recognition of any user’s writing,
improving and broadening functionality of the program over time.

 Benefits

The top, key benefits of the design are:
● Reception and interpretation of user input
● Efficient feedback and expression evaluation for the student
● Training data from user input training the recognition algorithm

 Assumptions

All assumptions of this design include:
● Functional and efficient OCR library
● Efficient conversation between the client and local storage
● Efficient conversation between the client and AWS

 Risks

Programming risks:
o Varying levels of experience with necessary languages

§ Ruby
§ Sinatra
§ ActionScript 3

o Varying levels of experience with necessary applications/services

	 9	

§ MongoDB
§ AWS
§ Kudu

o Multiple projects to consider (input recognition and data collection/analysis
involve different processes and different requirements). Resulted in initial
disorganization and stress.

o Miscommunication with the client. Resulted in delayed clarification of project
requirements, specifically whether the scope of the project included
implementation of an OCR engine.

Server and application risks:
o Dramatic failure in segmentation of the expression could result in poor

functionality and a poor user experience.
o Possibility of database failure or related connectivity issues. As a result, the OCR

would not be able to update its knowledge base and its performance could suffer.
o Although preliminary implementation uses fake S3 and EC2 servers, the final

product will be vulnerable to outages in the AWS service. If the OCR engine
remains on the server side, core functionality of the app will be significantly
reduced.

	 10	

Use Case Diagram

	 11	

 Design Decisions

We chose to use Google Tesseract as our functional OCR, because even though Google
Tesseract is not the ideal OCR (Optical Character Recognition) to use with handwritten data, we
are using a command-line implementation of it on a Virtual Machine in order to simulate the
process of sending handwriting data to a handwriting-recognition system--the real recognition
system that will be used in the end system is a black box which will later be implemented by
Nimbee themselves, but Tesseract will suit our purposes for implementing and testing the rest of
the program.

We have chosen to use a Sinatra file (written in Ruby) in order to communicate collected
data to storage and database systems. This is done because Sinatra works well in regulating data
traffic and Ruby is the only language which uses it, Ruby itself affording us a powerful and
readable language that allows us to perform a number of different functions. We will also use
Ruby because it allows us to use a powerful eval() function with which we can evaluate math
expressions and strings.

We have chosen an Amazon Web Services S3 (Simple Storage Solutions) instance for
storing bitmap data. It is a fake one, for our developing purposes, as S3 storage is not free. This
is chosen because it’s a simple binary blob storage system, and because the client wants it for its
wide distribution. The bitmap data is stored in a simple S3 bucket because it can be used for
training the OCR.

We have chosen a local MongoDB instance for storing a JSON blob, collecting stroke
data consisting of location and time points. Nimbee intends to replace the local MongoDB
instance with an Amazon Web Services EC2 (Elastic Compute Cloud) using MongoDB. The
reason for this is that Amazon services are highly scalable and secure. MongoDB is also highly
scalable and is suited for storing JSON objects.

We have chosen to implement the client program in ActionScript 3. The bulk of what the
user sees is written in ActionScript 3 because it is what was suggested by the client, Nimbee,
who in fact provided a collection of boilerplate code in which we could begin application
development. AS3 allows us to develop for all three of the client’s target platforms: iOS,
Android and Web.

The ActionScript 3 application also uses the Starling and Feathers user interface control
frameworks in order make the product more palatable and interesting for the end user--we chose
these frameworks because they are simple to use and made for developing slick programs with
simple user interfaces (for example, it is used with Angry Birds, etc.). These were implemented
by way of using higher resolution button graphics and similar ideas.

	 12	

Results

The project goal was to implement a framework that allows a handwritten function to be
analyzed. The data collected from the handwriting should be used to segment and recognize the
components of the function, which should then be evaluated and returned to the client side.
Additionally, the framework must store the handwriting data for later use in training the
recognition algorithm. The framework we implemented succeeds in all of these tasks.

The project’s primary constraint was the lack of an Optical Character Recognition (OCR)
algorithm suited for identifying handwritten text. The current OCR being used is Tesseract, an
engine designed to recognize printed, typed text. Due to the subpar performance of Tesseract,
testing the segmentation of the characters was done by manually opening the files created by the
segmentation process. If a more suitable OCR had been available, the segmentation testing could
have been done through inspection of the values returned by the OCR engine.

This project has taught us several valuable lessons, especially concerning communication
with the client. Initially, the project’s specifications were not well-defined and the team’s
progress suffered as a result. These issues showed us the importance of clear and direct
communication with a client, especially during the early phases of a project, when the goals are
more nebulous. We also came to understand the distinction between healthy struggles versus
unproductive struggles while coding. The client used a proprietary service that we initially did
not understand. Rather than seeking help with the service immediately, we attempted to solve
some of the issues on our own. This time would likely have been better spent tackling a problem
within the scope of the project, rather than trying to solving problems whose solutions were just
an email away.
	

