
	
 1	

Final Report

Team: JD Baugher, Austin Thompson, Tyler Thrailkill, Grant Walker
Client: Nimbee

06/13/13

	
 2	

Introduction

The members of the Boulder-based startup Nimbee have found great success in the
educational field with their previous startup, Kerpoof. The now hugely successful website was
created in 2006 to help children create and learn in a safe online environment. After two years
and an incredible rise in monthly traffic, the website was purchased by Disney in 2009 and
remains a popular tool for teachers all over the world. Despite their success, Nimbee presents yet
another opportunity for the talented team members to create an award-winning educational tool.

Teachers need methods for real-time, interactive lectures which can be delivered on a
variety of platforms, similar to Khan Academy instructional videos. Teaching fractions to middle
school students is infamously difficult and the problem still does not have a satisfactory solution.
Nimbee is focused upon solving this problem with their next product. They have begun work on
an application called Woot Math, with a planned release on Web, iOS, and Android. Woot Math
is designed to help teach students fractions and other mathematical concepts using tactile, visual
feedback for each problem. Woot Math will not only help students by aiding in the visualization
of fractions, it will also recognize and process their handwritten equations. Nimbee has requested
that we assist them in their Woot Math project by developing a framework for saving and
evaluating this handwritten user data.

Students need an intuitive method of inputting equations that provides them with instant
feedback. The goal is to design a framework that supports segmentation of a handwritten
equation into individual symbols and returns a solution to the equation. The stroke data and
bitmap image, gathered from the application, should be segmented into single characters. This
data is then sent to a database for future updates to the Optical Character Recognition (OCR)
engine’s knowledge base. In addition, the segmented data should be sent to an interchangeable
OCR black box to be analyzed. The results of the OCR engine will be combined into a single
term, evaluated on the host machine, and printed to the screen of the application.

Functional Requirements

Segmentation and Analysis
o Accept user’s handwritten input

§ Support digits, mathematical symbols and simple fractions
§ Single expression written on a single line only

o Split the input into bitmaps encompassing each component (a digit, an operator,
etc) of the expression

o Send the segmented data to an OCR black box in the correct order
o Accept the values returned by the OCR
o Evaluate the expression and return a result

Storage
o Bitmaps for each expression are component time-stamped and stored in S3

storage
o Store the filename of the bitmap and corresponding stroke data in an Elastic

Compute Cloud (EC2) database

	
 3	

User Interface
o Display a screen with the following:

§ Drawing canvas
§ Send button
§ Clear button
§ System status

• Display current state (eg., “Sending data...”)
• Display values returned by OCR and result of the expression

Stretch Goals
o Segmentation of complex fractions
o Splash screen

Non-Functional Requirements

Tools
o C++ for handwriting analysis in a Java/Objective C wrapper, allowing it to run on

Android or iOS
o VM development using Vagrant and Chef
o Supported platforms: Android, iOS, and Web
o Using GitHub for source control
o Ruby/Sinatra routing to AWS platform for database storage and recall.
o AWS Server
o MongoDB for storing JSON blobs
o Node.js for front-end web application
o Code must work with the existing application (Woot Math)

Performance
o Must segment equations into three categories: digits, symbols, and fractions
o OCR must interpret segments but doesn’t need to be accurate
o The equation analysis must perfectly evaluate the OCR output
o All of the above should happen without noticeable delay

	
 4	

Technical Design
	

Segmentation	

	
 Segmentation	
 is	
 the	
 process	
 of	
 taking	
 an	
 image	
 and	
 splitting	
 it	
 into	
 an	
 ordered	
 array	
 of	

sub-­‐images.	
 Each	
 sub-­‐image	
 represents	
 the	
 atomic	
 symbols	
 that	
 can	
 be	
 recognized	
 by	
 the	

Optical	
 Character	
 Recognition	
 (OCR)	
 engine.	
 Segmentation	
 can	
 be	
 placed	
 into	
 two	
 categories:	

online	
 and	
 offline.	
 Online	
 data	
 utilizes	
 the	
 time	
 and	
 path	
 of	
 the	
 strokes,	
 while	
 offline	
 data	
 looks	

at	
 a	
 static	
 image.	
 These	
 methods	
 can	
 be	
 used	
 together	
 or	
 individually.	
 Though	
 we	
 had	
 access	
 to	

both,	
 we	
 chose	
 to	
 use	
 offline	
 data.	

	
 Our	
 segmentation	
 algorithm	
 uses	
 the	
 bitmap	
 supplied	
 from	
 the	
 client	
 as	
 well	
 as	
 the	

stroke	
 data	
 from	
 pen	
 movement.	
 The	
 stroke	
 data	
 is	
 a	
 2D	
 array.	
 Each	
 sub-­‐array	
 consists	
 of	
 point	

data	
 in	
 the	
 format	
 [x_location0,	
 y_location0,	
 time0,	
 …,	
 x_locationn,	
 y_locationn,	
 timen].	
 Though	

the	
 strokes	
 may	
 look	
 continuous	
 on	
 the	
 client,	
 each	
 point	
 in	
 stroke	
 is	
 actually	
 the	
 vertex	
 of	
 a	

linear	
 polygon.	
 A	
 line	
 is	
 drawn	
 between	
 the	
 x/y	
 coordinates	
 of	
 adjacent	
 points	
 in	
 the	
 stroke	

array.	

	
 In	
 our	
 first	
 attempt	
 at	
 creating	
 a	
 segmentation	
 algorithm,	
 we	
 looked	
 at	
 several	
 papers	

and	
 tried	
 to	
 implement	
 a	
 few	
 simple	
 algorithms.	
 We	
 first	
 categorized	
 symbols	
 into	
 three	

groups:	

• Multi-­‐stroke	
 Symbols:	
 	
 +,	
 =,	
 x,	
 ÷	

• Simple	
 Fractions:	
 	
 ½	
 ,	
 ¼	
 ,	
 12/13	

• Simple	
 Symbols:	
 1,	
 2,	
 3,	
 /,	
 -­‐,	
 (,	
),	
 .	

For	
 all	
 three	
 groups	
 we	
 used	
 the	
 online	
 data	
 for	
 quick	
 	

analysis.	
 We	
 started	
 by	
 calculating	
 the	
 bounding	
 box	
 and	

centroid	
 for	
 each	
 stroke.	
 The	
 bounding	
 box	
 for	
 a	
 stroke	

was	
 determined	
 by	
 the	
 minimum	
 and	
 maximum	
 x/y	

coordinates	
 in	
 the	
 stroke.	
 The	
 centroid	
 was	
 calculated	
 by	

calculating	
 the	
 centroid	
 of	
 the	
 lines,	
 drawn	
 between	
 each	
 adjacent	
 point,	

and	
 taking	
 a	
 weighted	
 average.	
 As	
 a	
 result,	
 the	
 centroid	
 of	
 a	
 stroke	
 was	
 not	
 the	
 centroid	
 of	
 its	

bounding	
 box	
 and	
 was	
 not	
 affected	
 by	
 any	
 other	
 stroke.	

	

	
 	

The	
 algorithm	
 first	
 checks	
 for	
 complex	

symbols	
 first,	
 then	
 moves	
 to	
 simple	
 symbols.	

The	
 initial	
 check	
 is	
 for	
 multi-­‐stroke	
 symbols.	
 To	

find	
 these	
 symbols,	
 we	
 looked	
 for	
 overlaps	

between	
 bounding	
 boxes.	
 	

	

	

	

	
 	

	

	

	
 5	

	
 If	
 they	
 cross,	
 we	
 combine	
 the	
 strokes	
 into	

a	
 single	
 stroke	
 array	
 and	
 find	
 its	
 new	
 bounding	

box.	
 If	
 the	
 character	
 is	
 not	
 a	
 multi-­‐stoke	
 symbol,	

we	
 check	
 to	
 see	
 if	
 a	
 fraction	
 is	
 formed.	
 We	

determined	
 that	
 there	
 is	
 a	
 simple	
 fraction	
 if	
 the	

centroids	
 of	
 two	
 or	
 more	
 strokes	
 create	
 a	
 best-­‐fit	

line	
 with	
 an	
 absolute	
 angle	
 greater	
 than	
 60	
 .̊	

Once	
 a	
 fraction	
 is	
 determined,	
 the	
 strokes	

comprising	
 it	
 are	
 joined	
 into	
 a	
 single	
 stroke.	
 All	

remaining	
 strokes	
 are	
 considered	
 atomic	
 and	

sent	
 to	
 the	
 OCR.	

	
 We	
 had	
 specific	
 criteria	
 to	
 meet	
 for	
 the	
 segmentation	
 portion	
 of	
 this	
 project.	
 Our	
 scope	

is	
 limited	
 and	
 thus	
 does	
 not	
 cover	
 all	
 cases.	
 Here	
 is	
 a	
 short	
 list	
 of	
 what	
 the	
 segmentation	

algorithm	
 was	
 and	
 was	
 not	
 required	
 to	
 do:	

Required	
 Not	
 Required	

Segment	
 digits	
 [0-­‐9]	
 Complex	
 fractions	
 [
 !!!

!
	
 …]	

Segment	
 simple	
 fractions	
 [
 ½	
 …]	
 Overlapping	
 symbols	

Segment	
 symbols	
 [+,-­‐,x,=]	
 Multiple	
 equations	

	
 The	
 algorithm	
 described	
 above	
 was	
 able	
 to	
 meet	
 all	
 of	
 the	
 required	
 criteria	
 above	
 but	

had	
 several	
 major	
 flaws.	
 Since	
 the	
 stroke	
 data	
 was	
 based	
 on	
 time,	
 if	
 a	
 user	
 wanted	
 to	
 go	
 back	

and	
 change	
 something,	
 it	
 would	
 completely	
 mess	
 up	
 the	
 algorithm.	
 The	
 bounding	
 boxes	
 made	

the	
 writer’s	
 freedom	
 very	
 limited.	
 Not	
 only	
 could	
 the	
 physical	
 lines	
 not	
 cross	
 but	
 the	
 boxes	

drawn	
 around	
 them	
 could	
 not	
 cross	
 either.	
 In	
 addition,	
 the	
 algorithm	
 was	
 not	
 extendable.	

Complex	
 fractions	
 could	
 not	
 be	
 achieved	
 with	
 this	
 method	
 and	
 sometimes	
 simple	
 fractions,	

such	
 as	
 !!

!!"
,	
 would	
 fail	
 because	
 the	
 centroids	
 did	
 not	
 form	
 a	
 well-­‐defined	
 line.	
 Even	
 if	
 the	

algorithm	
 were	
 lucky	
 enough	
 to	
 get	
 a	
 complex	
 fraction,	
 it	
 would	
 not	
 be	
 possible	
 to	
 determine	
 a	

fraction	
 over	
 a	
 fraction.	
 The	
 final	
 nail	
 in	
 the	
 coffin	
 was	
 the	
 fact	
 that	
 we	
 were	
 sending	
 the	
 OCR	
 a	

simple	
 faction	
 as	
 an	
 atomic	
 symbol,	
 instead	
 of	
 the	
 symbols	
 comprising	
 the	
 fraction.	
 This	
 was	
 a	

major	
 flaw	
 because	
 the	
 OCR	
 could	
 not	
 interpret	
 fractions	
 and	
 if	
 it	
 could,	
 the	
 internal	

segmentation	
 in	
 the	
 OCR	
 engine	
 would	
 make	
 our	
 pre-­‐segmentation	
 pointless.	
 	

	
 It	
 was	
 time	
 for	
 a	
 new	
 approach.	
 Another	
 method	
 we	
 considered	
 was	
 to	
 make	
 an	
 outline	

of	
 each	
 symbol.	
 This	
 method	
 was	
 rather	
 complex	
 and	
 would	
 have	
 required	
 a	
 significant	

increase	
 in	
 time	
 to	
 process.	
 The	
 outlining	
 algorithm	
 works	
 by	
 analyzing	
 each	
 column	
 of	
 the	

bitmap.	
 When	
 a	
 string	
 of	
 colored	
 pixels	
 is	
 found	
 it	
 compares	
 it	
 to	
 the	
 previous	
 column’s	
 pixels.	

If	
 they	
 are	
 adjacent,	
 they	
 are	
 part	
 of	
 the	
 same	
 symbol.	
 Should	
 there	
 only	
 be	
 white	
 space	

following	
 colored	
 pixels,	
 the	
 symbol	
 is	
 complete.	
 Each	
 symbol,	
 in	
 this	
 case,	
 is	
 made	
 up	
 of	
 a	
 2D	

array	
 of	
 pixels.	
 The	
 pixels	
 were	
 then	
 reconstructed	
 onto	
 a	
 blank	
 bitmap	
 and	
 sent	
 to	
 the	
 OCR.	
 	

	
 While	
 the	
 outline	
 of	
 each	
 symbol	
 removed	
 the	
 bounding	
 box	
 issue	
 and	
 made	
 OCR	

interpretation	
 more	
 accurate,	
 it	
 presented	
 many	
 more	
 problems.	
 Due	
 to	
 the	
 horizontal	

movement	
 of	
 the	
 algorithm,	
 the	
 correct	
 ordering	
 of	
 the	
 symbols	
 was	
 lost	
 if	
 a	
 fraction	
 or	

complex	
 fraction	
 was	
 present.	
 Also,	
 complex	
 symbols	
 that	
 did	
 not	
 overlap,	
 such	
 as	
 ‘=’	
 and	
 ‘÷’,	

could	
 not	
 be	
 combined	
 into	
 a	
 single	
 symbol.	
 	

	
 6	

 	

Our	
 final	
 solution	
 addressed	
 many	
 of	
 the	
 problems	
 and	
 was	
 even	
 able	
 to	
 hit	
 some	
 of	
 the	

stretch	
 goals.	
 In	
 our	
 final	
 implementation,	
 we	
 took	
 the	
 best	
 of	
 both	
 worlds.	
 The	
 gap	
 algorithm	

we	
 used	
 is	
 an	
 offline	
 recursive	
 algorithm.	
 It	
 starts	
 by	
 scanning	
 the	
 bitmap	
 horizontally.	
 Each	

column	
 is	
 inspected	
 for	
 a	
 colored	
 pixel.	
 Should	
 white	
 space	
 exist	
 between	
 column(s)	
 of	
 non-­‐
white	
 pixels,	
 then	
 there	
 must	
 be	
 at	
 least	
 one	
 symbol	
 there.	
 This	
 repeats	
 to	
 the	
 end	
 of	
 the	

bitmap.	
 An	
 array	
 of	
 sub-­‐images,	
 cropped	
 from	
 the	
 bitmap	
 at	
 changes	
 in	
 white	
 space,	
 is	
 created.	

The	
 scanning	
 algorithm	
 is	
 then	
 called	
 on	
 each	
 sub-­‐image.	
 This	
 time	
 the	
 scanning	
 occurs	

vertically	
 across	
 rows.	
 This	
 repeats,	
 flipping	
 rows/cols,	
 until	
 only	
 a	
 single	
 sub-­‐image	
 is	
 cropped	

in	
 the	
 vertical	
 scan.	

	
 	

	

The	
 result	
 is	
 an	
 ordered	
 set	
 of	
 atomic	
 symbols.	
 Though	
 the	
 user	
 is	
 still	
 restricted	
 due	
 to	

the	
 bounding	
 box	
 effect,	
 we	
 have	
 opened	
 the	
 segmentation	
 up	
 to	
 extension.	
 Since	
 the	
 bitmap	

is	
 static,	
 the	
 user	
 is	
 not	
 bound	
 by	
 time	
 and	
 may	
 freely	
 go	
 back	
 and	
 edit	
 the	
 equation.	

Additionally,	
 the	
 vertical	
 scan	
 gave	
 us	
 additional	
 knowledge	
 about	
 the	
 symbols	
 being	
 written.	
 	

	
 7	

We	
 were	
 able	
 to	
 determine	
 if	
 a	
 multi-­‐stroke	
 symbol	
 was	
 a	
 fraction	
 or	
 ‘=’	
 sign.	
 By	

knowing	
 a	
 fraction	
 was	
 written,	
 we	
 could	
 anticipate	
 it	
 for	
 evaluation.	
 Thus,	
 we	
 could	
 send	
 the	

OCR	
 the	
 numerator	
 and	
 denominator	
 and	
 let	
 the	
 evaluation	
 take	
 care	
 of	
 the	
 division	
 symbol.	

As	
 an	
 added	
 bonus,	
 the	
 recursive	
 nature	
 of	
 this	
 algorithm	
 let	
 us	
 create	
 very	
 complex	
 fractions	

like	
 the	
 following:	

	

!!
!"!!
!
!"×!

!!

!
!!!

	

	

Conclusion?
	
 Overall,	
 this	
 segmentation	
 is	
 the	
 best	
 approach	
 to	
 the	
 problem	
 and	
 gave	
 us	
 the	
 best	

results.	
 The	
 down	
 side	
 to	
 this	
 algorithm	
 is	
 the	
 lack	
 of	
 freedom	
 on	
 the	
 user’s	
 part.	
 However,	
 the	

code	
 for	
 using	
 online	
 data	
 and	
 outlining	
 is	
 still	
 in	
 the	
 application.	
 This	
 algorithm	
 can	
 ultimately	

be	
 extended	
 and	
 improved	
 with	
 the	
 addition	
 of	
 these	
 other	
 methods.	
 By	
 accomplishing	
 the	

assigned	
 goals,	
 achieving	
 some	
 of	
 the	
 stretch	
 goals,	
 and	
 allowing	
 further	
 stretch	
 goals	
 to	
 be	

made;	
 we	
 believe	
 that	
 we	
 have	
 met	
 the	
 criteria	
 for	
 a	
 good	
 algorithm.	

	

System Architecture

	
 8	

Design

 Specifications

The problem associated with implementing such technology is the need for a consistent,
accurate, and efficient OCR engine that ideally executes as the student writes. Regardless of
whether offline or online recognition is used, the program needs to capture input information,
accurately interpret it, and evaluate the expression if possible. Handwritten data coming from the
client-side digit recognition applications is stored in straight blobs, which includes bitmap data
and stroke data. The OCR engine then analyzes the data locally and returns an interpreted
expression.

The program will also need to send packets of the information it receives. Using Amazon
Web Services (AWS), the collected stroke data will be stored in EC2 and the bitmap will be
stored in an S3 storage system. The database provides information to the handwriting recognition
software, tailoring its recognition of individual users’ handwriting. This data will be retrieved
when the knowledge base for the OCR algorithm is being updated.

 Usage

This addition to the program is important for both teachers and students. It will allow
students to work intuitively when solving problems. Since the text will be uniform once
converted, a teacher viewing the student’s progress can easily and accurately follow the student’s
work flow. If a teacher creates a hint or solution to the problem, students can have a better
understanding of the material covered. Finally, the training data gathered from user input can be
used to train the recognition algorithm and further advance the recognition of any user’s writing,
improving and broadening functionality of the program over time.

 Benefits

The top, key benefits of the design are:
● Reception and interpretation of user input
● Efficient feedback and expression evaluation for the student
● Training data from user input training the recognition algorithm

 Assumptions

All assumptions of this design include:
● Functional and efficient OCR library
● Efficient conversation between the client and local storage
● Efficient conversation between the client and AWS

 Risks

Programming risks:
o Varying levels of experience with necessary languages

§ Ruby
§ Sinatra
§ ActionScript 3

o Varying levels of experience with necessary applications/services

	
 9	

§ MongoDB
§ AWS
§ Kudu

o Multiple projects to consider (input recognition and data collection/analysis
involve different processes and different requirements). Resulted in initial
disorganization and stress.

o Miscommunication with the client. Resulted in delayed clarification of project
requirements, specifically whether the scope of the project included
implementation of an OCR engine.

Server and application risks:
o Dramatic failure in segmentation of the expression could result in poor

functionality and a poor user experience.
o Possibility of database failure or related connectivity issues. As a result, the OCR

would not be able to update its knowledge base and its performance could suffer.
o Although preliminary implementation uses fake S3 and EC2 servers, the final

product will be vulnerable to outages in the AWS service. If the OCR engine
remains on the server side, core functionality of the app will be significantly
reduced.

	
 10	

Use Case Diagram

	
 11	

 Design Decisions

We chose to use Google Tesseract as our functional OCR, because even though Google
Tesseract is not the ideal OCR (Optical Character Recognition) to use with handwritten data, we
are using a command-line implementation of it on a Virtual Machine in order to simulate the
process of sending handwriting data to a handwriting-recognition system--the real recognition
system that will be used in the end system is a black box which will later be implemented by
Nimbee themselves, but Tesseract will suit our purposes for implementing and testing the rest of
the program.

We have chosen to use a Sinatra file (written in Ruby) in order to communicate collected
data to storage and database systems. This is done because Sinatra works well in regulating data
traffic and Ruby is the only language which uses it, Ruby itself affording us a powerful and
readable language that allows us to perform a number of different functions. We will also use
Ruby because it allows us to use a powerful eval() function with which we can evaluate math
expressions and strings.

We have chosen an Amazon Web Services S3 (Simple Storage Solutions) instance for
storing bitmap data. It is a fake one, for our developing purposes, as S3 storage is not free. This
is chosen because it’s a simple binary blob storage system, and because the client wants it for its
wide distribution. The bitmap data is stored in a simple S3 bucket because it can be used for
training the OCR.

We have chosen a local MongoDB instance for storing a JSON blob, collecting stroke
data consisting of location and time points. Nimbee intends to replace the local MongoDB
instance with an Amazon Web Services EC2 (Elastic Compute Cloud) using MongoDB. The
reason for this is that Amazon services are highly scalable and secure. MongoDB is also highly
scalable and is suited for storing JSON objects.

We have chosen to implement the client program in ActionScript 3. The bulk of what the
user sees is written in ActionScript 3 because it is what was suggested by the client, Nimbee,
who in fact provided a collection of boilerplate code in which we could begin application
development. AS3 allows us to develop for all three of the client’s target platforms: iOS,
Android and Web.

The ActionScript 3 application also uses the Starling and Feathers user interface control
frameworks in order make the product more palatable and interesting for the end user--we chose
these frameworks because they are simple to use and made for developing slick programs with
simple user interfaces (for example, it is used with Angry Birds, etc.). These were implemented
by way of using higher resolution button graphics and similar ideas.

	
 12	

Results

The project goal was to implement a framework that allows a handwritten function to be
analyzed. The data collected from the handwriting should be used to segment and recognize the
components of the function, which should then be evaluated and returned to the client side.
Additionally, the framework must store the handwriting data for later use in training the
recognition algorithm. The framework we implemented succeeds in all of these tasks.

The project’s primary constraint was the lack of an Optical Character Recognition (OCR)
algorithm suited for identifying handwritten text. The current OCR being used is Tesseract, an
engine designed to recognize printed, typed text. Due to the subpar performance of Tesseract,
testing the segmentation of the characters was done by manually opening the files created by the
segmentation process. If a more suitable OCR had been available, the segmentation testing could
have been done through inspection of the values returned by the OCR engine.

This project has taught us several valuable lessons, especially concerning communication
with the client. Initially, the project’s specifications were not well-defined and the team’s
progress suffered as a result. These issues showed us the importance of clear and direct
communication with a client, especially during the early phases of a project, when the goals are
more nebulous. We also came to understand the distinction between healthy struggles versus
unproductive struggles while coding. The client used a proprietary service that we initially did
not understand. Rather than seeking help with the service immediately, we attempted to solve
some of the issues on our own. This time would likely have been better spent tackling a problem
within the scope of the project, rather than trying to solving problems whose solutions were just
an email away.
	

