m FullContact

Photo Deduplication

Team:
Collton Deskin

John Kelly
Michael Lewis

Introduction

The Client

"If you've got an address book, you've got an address book problem." Contact
information is often collected in fragments, leaving the user to assemble and manage it by
hand. FullContact aims to change that by automating the storage, assembly, and retrieval
of fragmented contact information. A user of FullContact’s web service (currently in beta) is
able to import and merge contacts from various sources (physical business cards, email
lists, social media, etc.), and then later retrieve their contacts from anywhere in the world.

The Product

As part of the contact conglomeration process, duplicate data is generated.
Removing duplicate (and even just similar) text is a classic and relatively easy problem in
computer science. However, identifying visually similar images deterministically is not such
a trivial task. Presenting multiple duplicate image choices for representing a contact to the
end user makes for a poor user experience.

Thus, a process is needed which will identify visually similar images for removal,
and this process must be highly scalable to large data sets, on the order of billions of
inputs. In addition, Precision must remain perfect, or nearly so, while achieving maximum
Recall possible (see Appendix A for definitions of Precision and Recall).

By automating this process well, FullContact will be able to significantly improve its
user experience by selecting an image to represent a contact. The system will appear to
be merging contacts (i.e. removing extraneous information), rather than simply collecting
them together.

Requirements

High Level Description

As part of the dataset abstractly referred to as a “contact” in FullContact’s system, a
set of avatars (images representing a particular digital account) is maintained. Because
these images are pulled from multiple related sources, it is very possible for a contact to
accumulate one or more duplicate images.

The purpose of the project was to design a software solution which can identify such
duplicate images accurately enough to provide a useful function to the end user. This
required the evaluation and implementation of several image comparison algorithms to
decide which provided the best balance of performance and correctness.

Functional Requirements

The Photo Deduplicator needed to be able to recognize photos that are “the same’

with a high degree of Precision and Recall.

Specific Functionality included:

Fetching contact pictures

Comparing contact pictures

Must have high degree (>50%) of Precision and Recall
Must be highly scalable

Must be able to run on Amazon’s Elastic MapReduce
Must be able to process images from Amazon’s S3

Non-Functional Reguirements

Risks

Must not hinder UX

Must be built using either Gradle or Maven

Must have 70% unit testing coverage

Team must decide whether to do Deduplication upon retrieval of photos, upon
capture of the photos, or as a batch process in the background.

Technical
o The algorithm selected for identifying duplicate images may scale poorly on
large datasets
o The parameters of the algorithm may not have settings which will produce
high Precision/Recall without considerable processing
Skill
o Pre-existing team experience with HTTP and RESTful APIs was low (one
member with experience)
No member on the team had experience with Maven or Gradle
No member on the team had experience with scalable server technologies
(Hadoop, Storm, etc.)
Other
o May have run into problems with licensing (specifically with “viral” GPL code)

Design

Core Library

In order to easily deduplicate images in a specific FullContact address book
contact, the team produced a library which is available and deployed on the FullContact
maven repository. The library exposes the following high-level functionality:

PhotoFetcher
PhotoFetcher is the base interface for acquiring image data given a set of URLs.
Implemented By:
e AsyncPhotoFetcher: Uses asynchronous HTTP requests to fetch images quickly.
e DiskCachingPhotoFetcher: Uses a local disk cache to stabilize fetch returns.

Asynchranous Image

| Radpones "
Intemet AcyncPhotoFetcher
-
Parallel HTTP Reguests
Input Output
WValid Image
Image Data,
Idm;ﬂ.ﬁ“ P Image : Url
Mapping
DiskCachingPhotoFetcher
" AsyncPhotoFetcher
F
Cache Miss
Input v Output
Valid Image
Image . . . Drata,
|dentifiers Local Disk Cache - B Image : Url
(URLS) Cache Hit Mapping

Figure 1 : Photo Fetching Lifecycle

ImageComparisonGenerator

The ImageComparisonGenerator receives a set of images and returns a data
structure that contains each image as well as each of the images that are similar to it and
their comparative similarity (hamming distance). In order to perform this action, it
implements a strategy pattern using the ImageHash interface. See Figure 2, below.

Images

——
Imagg Inaga-ta-Hash
Comparison Distance mappings
Ganerator
Image Bkt
Data Hash
ImageHash
Implemented By
Py
- T
e xh""-\-\.
o~ T
_“"\-\.

DHash

AHash

PHash

Figure 2: Image Comparison Generator Data Flow

ImageScaler

The ImageScaler class takes a given image, reduces it to a chosen size, and
grayscales it. The ImageScaler is also able to extract and return luminosity levels of a given
image, another common operation in image hashing algorithms.

ImageHash

The ImageHash interface receives a Bufferedimage Java object and returns a 64-bit
(i.e., Java type long) hash based on the chosen hashing algorithm. Example algorithms
include AHash (average luminosity based hash), DHash (luminosity gradient based hash),
and PHash (discrete cosine transform based hash). Additional algorithms can be extended
from the interface if necessary for performance or correctness.

Implemented By:

e PHash: Hashes based on the result of a discrete cosine transform

e AHash: Hashes based on the average luminosity of the image

e DHash: Hashes based on the changes in luminosity of the image
(See Appendix B for more details on algorithm specifics)

FastDCTMaker

The naive solution to performing a DCT has O(n*) complexity on the size of the input
image. The FastDCTMaker implements an optimized solution to the DCT calculation which
is only O(n®) complexity, thereby presenting a significant speedup in the PHash calculation.

Profiling Subpackage
This package is a small set of classes segregated off from the core functionality of

the library. These classes are intended to provide simple, out-of-the-box demonstration of
library functionality and usage.

UrlDeduplicator

The UrlDeduplicator parses the output from ImageComparisonGenerator into a
user-readable, tab-delimited, relational matrix to show duplicates within a threshold. The
UrlDeduplicator is included in the Profiling subpackage as a demonstration of the library’s
capabilities of remote image fetching and hash comparison.

: https://secure.gravatar.com/avatar/5842de36991e99d26a550191d36bd7c37s=140&d=htt
http://profile.ak.fbcdn.net/hprofile-ak-snc4/369799 1045047966 1321156454 n.jpg
http://a@.twimg.com/profile images/1813282463/danlynn-avatar normal.png
http://graph. facebook.com/danklynn/picture?type=large
https://isl.4sqi.net/userpix thumbs/JV525DQAX50IRCHH.png

0 1 2 3 4

W R T

WM @
[
1
[

Figure 3: Example UrlDeduplicator Matrix

StatisticsGenerator

The StatisticsGenerator takes an argument to specify which hashing algorithm to
use, as well as a file of human generated comparisons. The StatisticsGenerator reads this
file and compares each pair of URL'’s to see if they are duplicates. It then uses the given
indicator to determine if it's results were correct. While comparing images, the
StatisticsGenerator keeps track of how many true positives, false positives, true negatives,
and false negatives it finds and uses these to calculate Precision and Recall for the given
hashing algorithm at each comparison threshold. See Appendix B for example outputs
used in the final selection of a hashing algorithm for this project.

Hadoop Functionality

An important aspect of the project was scalability. Running a Hadoop MapReduce
job was chosen for this purpose. As part of a Hadoop job, a small number of classes
needed to be developed with specific functionality. For more information about Hadoop,
see the Technical Design section.

ImagelnputFormat

The ImagelnputFormat is a custom Hadoop InputFormat that is used to define how
the Hadoop job will accept input files. The ImagelnputFormat specifies the
ImageRecordReader as the default Hadoop RecordReader for the Hadoop job. The
ImagelnputFormat also specifies that input files are not to be split and are to be processed
as whole files. (Images are stored as discrete files on the HDFS)

ImageRecordReader

The ImageRecordReader does the bulk of the processing in the MapReduce job.
The ImageRecordReader receives a split from the ImagelnputFormat, in this case a full
image file, and passes to the mapper a <key, value> pair consisting of the S3 image URI
and a hash value.

HashMapper
HashMapper is a part of a Hadoop job designed to run on Amazon’s Elastic

MapReduce service. The mapper receives a URI to an image in a given Amazon S3
database and a hash for that image. The mapper then stores this information in text files in
the specified output file for use by the HashReducer. Each node in a Hadoop cluster
running Amazon’s m1.large machines has 3 map threads so for a cluster with 40
machines, there will be 120 mappers running simultaneously and storing information in the
output folder.

HashReducer

There is generally 1 reduce thread per node in a Hadoop cluster so there are up to
40 reducers running simultaneously in a 40 node cluster. Each of these reducers is reading
input from the map outputs and, in our case, simply storing that again into one file. This
reduces the number of files to process. If all map outputs were run through a single reducer,
it would produce a single output file with the results of all the processed images.

Technical Design

Hadoop

The use of Amazon’s Elastic MapReduce and other Web Service utilities allowed
the team to scale the small scale library into something that could be used on extremely
large datasets with relative ease. The final Hadoop job involved a 42 node Hadoop cluster
with each node in the cluster running 4 threads simultaneously. Three threads on each node
were dedicated to mapping while one thread on each node was dedicated to reducing.
This allowed the team to process a high volume of images with great speed. In the end, it
took approximately 50ms per image (with startup and shutdown overhead averaged
across all images) to fully process and produce the desired output for 100,000 images.
This could be sped up even more by increasing the number of nodes in the cluster, by
increasing the number of threads per node, or by designating more of the processing to the
various nodes. This makes the system very scalable, which is very important for
FullContact’s eventual goal of using the library to process their 2 billion image database.
Figure 4 shows how data is handled in each node of a Hadoop cluster.

Node 1 Node 2

Files loaded from local HOFS stores Files loaded from local HDFS stores

InputFormat InputFormat

Spi Spii Spiit | Spit | | Spiit | | Spiit |
RecordReaders; | RR || RR | | RR | | RR || RR | | RR |
Input (k, v) pairs ¢ i Input (k, v) pairs
‘ map | may | map | map | map | map
Intermediate (k, v) pairs \ A.m@dlate (k, v) pairs
Y ¥
Partitioner Partitioner

“Shuffling” process

pairs exchanged
‘ by all nodes (sort)

reduce ‘ | reduce |
Final (k, v) pairs Final (k, v} pairs
Y Y
Writeback to) Writeback to
local HDFS QOutputFormat ‘ | QutputFormat | local HDFS
store T I store

|
|
|
|
|
|
|
|
|
|
|
|
|
l — I
e | Intermediate (k, v} | oY :
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4: Hadoop Data Flow

An Efficient DCT

The 2D DCT calculation as part of PHash posed an interesting algorithmic problem.
The naive implementation performs poorly enough that PHash attains an undesirable
performance-to-speed ratio. As part of the team’s research into the problem, an
implementation that was only O(n®) complexity (compared to the naive O(n*)) was
discovered. However, the efficient implementation came without comments or
documentation, and was written in inexpressive code. A key nonfunctional requirement of
the project was high testability to maintain code health, so a “black box” algorithm was
unacceptable.

After much analysis and whiteboarding, it was determined that the efficient
implementation was correct. A small amount of additional algebraic analysis demonstrated
why it was correct. A 2D DCT relies on the collection of several different frequencies of
visual data at various strengths, as determined by the input image, accumulated in two
orthogonal dimensions. In the naive implementation, these frequencies are treated as
unrelated to the destination pixel in the resultant DCT and instead a position-dependent
factor is applied to each such pixel; however, a small amount of clever algebra reveals that
these factors can be subsumed into the frequency terms to form output-dependent
frequencies. By cleverly transposing indices in the calculation body, rows and columns of
pixels can be collected into the DCT in a single iteration while maintaining the location
dependency of their coefficients, thus significantly reducing the complexity of the algorithm.
Although the full derivation of this result is far too lengthy for this report, it can be
accomplished with only a moderate amount of linear algebra and time.

Nonstandard Color Spaces

As part of the large scale Hadoop job setup, it was discovered that Java’s native
ImagelO library has trouble reading certain images. Specifically, in this case, it was
crashing the job when it attempted (and failed) to read jpg images that were encoded in
unusual color spaces. Most jpg images will use the sSRGB or Adobe RGB color profiles and
convert internally to the more efficient YCrCb color space; however, theoretically any color
space with a matching color profile that allows for conversion to and from YCrCb can be
used.

When the specification for an image’s color profile is not included or is included in a
non-standard method, the ImagelO library is unable to parse the image data and throws an
exception. The team investigated several solutions, most of which were unsuccessful at
reading the selected test images for this edge case, and eventually settled on a particular
algorithm which would handle several relatively common CMYK color spaces at the cost of
significant code bloat and low readability.

Serendipitously, the chosen algorithm proved so difficult to implement that the job
was run with the unusual color space code disabled, which led the team to discover the
actual proportion of images that were unreadable by the ImagelO library. Less than 0.2% of
all images (margin of error 0.015%) were unreadable by the simple solution. Although the
client was interested in lowering this proportion, it was agreed that the diminishing returns
were so low as to be unreasonable to pursue at this time.

Design Decisions

Identifying duplicate images is a fuzzy logic task. It is easy for humans but non-trivial
for computers. The team needed an algorithm that would generate a signature for an
image which would vary relative to the amount of modifications made to the image. This
takes the form of a hashing algorithm that is resistant to small changes in image input data,
unlike traditional hashes such as MD5, where hashes are distributed essentially randomly
across input data. The three primary hashing algorithms that the team investigated were
Average Hash (AHash), Difference Hash (DHash), and Perceptual Hash (PHash). Of the
three options, PHash exhibited noticeably better Precision and Recall at a cost of
increased running time. This increase in runtime was caused by PHash'’s larger seed
image. PHash stores and processes 16 times as many pixels as AHash and
approximately 14 times more pixels than DHash in order to compute it's 64 bit hash. The
increase in computation time caused by PHash was negligible, however, compared to the
computation time taken in scaling and grayscaling the images, which was common to all
three of the hashing implementations. As such, PHash was chosen for the final hashing
implementation.

With respect to the choice of language, the client requested that the team use either
a Ruby or Java derivative not only to keep the utility and design environment consistent with
the FullContact setting, but also so that the knowledge and experience of the FullContact
development team had with these languages would be available and relevant. The team
decided upon the use of standard Java because it offered efficiency as well as easy
integration into various build systems (including testing libraries). On top of this each team
member already possessed some measure of experience with Java. Ruby was a highly
considered alternative due to its simpler handling of files and input streams, however the
team decided against it, because there were a smaller number of FullContact employees
who were dedicated Ruby programmers (compared to dedicated Java programmers)
suggesting possible integration complications and difficulty finding help when needed.

The team chose to use the Gradle build system, which is based on Groovy (a Java
derivative), to compile and build the jar files for the library. There is a scripting element to

the build system, as well as extensive plug-ins which allow for compilation by convention
and simplification of build specifications. Gradle was also more strongly supported within
FullContact’s development team than alternatives such as Ant or Maven. This meant that
help was easily accessible. Gradle’s scripting style was also very similar to Java, making it
more natural to learn on the fly. To support the automated build system of Gradle, the team
chose to use FullContact's Jenkins server to automate the code testing process; on top of
this, a Cobertura plugin was applied to profile test coverage. The team did not consider
other automated testing options because FullContact already had a Jenkins server which
could be easily integrated into. Putting all this together, the team was able to setup
automated building and testing which allowed more time for coding rather than testing,
building, and verifying.

As part of the original project specification, the client requested that the image
deduplication implementation have very high scalability. This led to implementing a
MapReduce style algorithm to work with Amazon's S3 and Elastic MapReduce systems to
handle high volumes of images from an S3 storage server. Using Amazon Web Services
allowed the team to avoid manual setup of a Hadoop cluster, which would be well beyond
the scope of the project.

Due to performance concerns, the team also chose to use a Code Profiler to detect
hot-spots and repeated access to sections of code. For this, YourKit was chosen at the
suggestion of the client. From this the team was able to deduce which function calls in the
library were taking the longest in order to identify potential optimizations to maximize
performance. Unfortunately, the heaviest computational tasks were in Java's native image
scaling functions, and were beyond the team’s control; team-written functions accounted for
less than 10% of all processing time.

Results

At the core of the project the team’s objective was to create a Java library that would
allow a user to generate and compare hash values for given images. This small scale
library performed above expectations, surpassing the 50% targets in Recall and Precision
with ease. Figure 5 demonstrates the performance of PHash, which was selected as the
best hashing algorithm of the three that were implemented. The most important of the two
metrics, for FullContact’s use cases, is Precision because it is important not to erase
pictures from a contact that are not, in-fact, duplicates. PHash was able to sustain
Precision of over 99% up to approximately 83% Recall and Precision over 90% up to
approximately 90% Recall [Figure 5].

The only concern with the PHashing algorithm was an increase in runtime due to the
more intense computation involved in performing a discrete cosine transform on a larger

image than the other two implementations. PHash was still able to produce approximately
500 hashes per second locally, however, so it was decided that runtime could be sacrificed
for the better Precision and Recall metrics provided by PHash.

The core library is also under a test suite with approximately 89% total conditional
coverage. Conditional coverage is important in test coverage because it implies coverage
of all possible control flows. In addition to the core library, there were also several testing
and profiling utilities which were used to test functionality and demonstrate capabilities of
the library. These utilities included a file system based image deduplicator, a web based
image deduplicator, and a statistics generator. Once large scale testing was started, the
team discovered an issue with Java's ImagelO library that does not allow it to load images
encoded in certain color spaces, or images produced by certain programs or cameras.
Producing a robust image loader that would handle all color spaces and encodings was
beyond the scope of the project, but after running an Elastic MapReduce job ignoring
images that were unloadable, the team found that only about 100 of the 113,800 images in
our test set were missed. The test data set was a selection of the first 100,000 images in
FullContact’s database. This meant that the images in the test set were uncorrelated so the
team is confident that more than 99.9% of the images in FullContact’s database of close to
2 billion images will be processable.

PHash Precision vs Recall

_
=)

e P FEC [O
|

_
(=5

i
%

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63
1 5 9 13 17 21 25 280 33 37 41 45 40 53 57 61 65

Figure 5: PHash Precision vs Recall

Appendices

Appendix A: Precision and Recall

Precision - Precision is a measurement of how much of the returned data is
relevant and is given by the equation (True Positives)/(True Positives + False
Positives).

Recall - Recall is a measurement of how much of the relevant information was
retrieved and is given by the equation (True Positives)/(True Positives + False

Negatives).

Appendix B: Image Hashing Algorithm Details

PHash

The PHash algorithm scales and grayscales a given image down to a 32x32
square. It then performs a discrete cosine transform on the stored luminosity data in
the image which compresses low-frequency (highly human-visible) visual data into
the upper left quadrant of the image. After averaging this information it then
generates a 64-bit hash by comparing each pixel of the upper left 8x8 quadrant with
the average value of the discrete cosine transform. See Figure A.1.

AHash

The AHash algorithm converts each image that it receives to a grayscale, 8x8 pixel
thumbnail. Once this is done, it calculates the average luminosity of the thumbnail.
AHash then proceeds through each pixel and generates a hash based on whether
each pixel is above or below the average. See Figure A.1.

DHash

The DHash algorithm converts each image that it receives to a grayscale, 9x8 pixel
thumbnail. It then generates an 8x8 matrix of directed gradients between pairs of
pixels, oriented from left to right, which are processed into a 64-bit hash. See Figure
A1.

DHash

E kK E 4 4 4 4 4

I }. 10001101
01010100

7%*.

| Average Color: 136

Find pixels abovea/
| below average:

Extract low freguency
data, excluding loweast.
{i.e., Flat color data)

PHash

Bitvwise
comparnson t
average DFZTE'

cosificiant

Figure A.1: Visual Comparison of Hashing Algorithms

10010100
10010110
10010110
10010100
Q0100100

01010010

11101111
11001111
11011111
11001011
11000110
11111110
11111110
11111011

01011100
00000010
00011001
00011001
00010001
00011001
11011001
11010011

