
EECS Kinect Exhibit Team

Visualization Framework for Esoteric Sensory Devices

June 18, 2013

Andrew DeMaria
Austin Diviness

Aakash Shah
Ryan Stauffer

Matthew Stech



Contents

1 Introduction 1
1.1 Client Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Product Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Requirements 2
2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 System Architecture 3

4 Technical Design 4
4.1 System Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Input Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Design and Implementation Decisions 7

6 Results 8
A Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B Continuing Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C Relevant Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



1 Introduction

1.1 Client Description

The CSM EECS Department, represented by Professor Cyndi Rader and Assistant Professor Yong Bakos,
proposed and acted as contacts for this project. During the fall of 2012, Professor Rader taught a course
entitled Readings in Software Engineering, where the class focused collectively to write a project named
Recycler Robbie. This project made use of the Microsoft Kinect and OpenNI library in order to create a
demonstration game using hand tracking. The Kinect exhibit project evolved from the results of this class.

1.2 Product Vision

After seeing the results of the Recycler Robbie project, Professors Rader and Bakos contracted the field
session team to use the existing code base and create a standalone, open-source framework for multiple
interactive visualizations. As this project is intended to live beyond the life cycle of the group, the
framework would need to be designed such that future teams and students could easily adapt and contribute
to the code base. These students would also be able to create and run their own visualizations utilizing
the framework.

1



2 Requirements

2.1 Functional Requirements

• Easy interfacing with additional visualizations created by students

– Programs can be inserted and made functional with minimal effort

– Support for Processing applets

• Well-documented code base

– Original programs as examples

– Documentation explains the functionality and usage of SDK components

• Facilitation of self-contained visualizations

– Modular and expandable

• Use an easily accessible source revision control system for the code base

• Standalone, easily distributed, turn-key design

– Can be run without additional user input once started

– Can be easily configured for different user environments

• Interactive exhibit using the Microsoft Kinect

2.2 Non-Functional Requirements

• Use Java with the Processing library

• Use the Colorado School of Mines Github as an easy, well known source revision control system

– Use Github’s wiki capabilities to document the framework and facilitate student contributions

• Ability to interface with additional input devices

• Legacy code refactored to meet the new goals of the project

• Transition between visualizations is coordinated by a launcher

2



3 System Architecture

As the SDK is designed to be modular and expandable, it is capable of communicating with both hardware
devices via drivers, as well as graphical libraries for displays. All of these libraries operate independently,
allowing a user to make use of whichever libraries they would prefer without worry of conflicts.

For hardware devices, currently only the Microsoft Kinect is supported. Data for the Kinect is gathered
by interfacing with the OpenNI and Nite libraries, and the provided data is processed and returned to
modules that use its information through the Input Services branch of the SDK.

For graphical libraries, the SDK supports multiple different graphical programming methods. In ad-
dition to supporting Java’s integrated AWT rendering and console-based displays, the SDK also contains
the core files needed to use the Processing series of functions. Processing was initially specified in the
client requirements, and as such the team’s primary focus was put towards fully supporting Processing’s
library. All interaction between these libraries is internalized within the SDK so users can use the external
libraries’ functions without changing the design of their module. (Figure 1)

3



4 Technical Design

4.1 System Flow

At a high level, the system comprises of 3 primary subsystems: the modules, the Interface SDK, and
the hardware. Modules are the user-developed units that can be inserted into the system. The SDK as
a whole provides both a layer of abstraction and a platform for modules to run and communicate with
hardware devices. This is achieved by isolating the subsystems within the SDK into module management,
hardware management, and event management. Module management is devoted to managing the lifecycle
of modules and the transitions between them. Hardware management pertains to abstracting away details
about the hardware by loading drivers. The Hardware Manager then provides an interface for accessing
these drivers. Event management handles delegation of events to their registered receivers.

Since the Module Manager controls the lifecycle of the program, a series of initial steps must be followed
in order for the framework to run. The primary step is loading the Module Manager manifest file. The
manifest contains critical information such as the default module, the location to load modules from, and
the configuration store. The configuration store maps arbitrary strings to configuration file locations, so
as to be accessed by any component that requires an external configuration file.

Once the manifest is loaded, the Module Manager attempts to build a list of all available modules.
Availability is determined by the integrity of the JAR, the availability of other required modules, and by
checking requested hardware functionalities against the current hardware capabilities. Required modules
and requested hardware functionalities are dictated by the module manifest which is located in each JAR.
After this is completed, only available modules are remaining in the Module Manager’s index of meta
information on the modules. In addition, valid modules’ meta-data is updated to reflect which jar the
module can be found in.

At this point, the Module Manager will allow the Hardware Manager to initialize its assets. This
includes loading its own Hardware Manager manifest file, which includes information about all of the
functionalities and devices that the framework supports. Through this, the Module Manager can give the
Hardware Manager a module’s hardware dependencies and receive feedback on if these dependencies are
met.

Using this same process, the Module Manager can check whether the default module meets all its
hardware dependencies. Checking its dependencies and indicating the default module in the Module
Manager manifest is vital because the Module Manager relies heavily on the assumption that it can fall
back to inflating the default in the case of a different module’s failure. In the case where the default module
fails, then the Module Manager will throw a fatal exception, which halts the framework’s execution.

Initially, the Module Manager loads the default module, and this is where the main loop is entered
and modules are loaded and executed. This consists of a multitude of safeguards to ensure that the next
module is capable of running. First and foremost, the module manager attempts to inflate an instance of a
Module. To do this, the Module Manager uses information in the Module manifest indicating which class
to load, in which package this class can be found and the path of the JAR in which the module resides
to instantiate an instance of a generic ModuleInterface. A couple typical developer errors can occur at
this point; first, the class may not be found because the reference to the class or package was invalid, or
second, the class did not correctly extend from the current version for one of the abstract Module classes.
Unfortunately, there are a few other less common errors that can occur at this stage including; the JAR
file was tampered with after the Module Manager updated its index, or there was a breach in security
policy for the class loader. However, if all goes well, the Module Manager is left with a proper instance of
the ModuleInterface and it can continue.

Next, is to check that the module’s hardware dependencies are met. If so, the Hardware Manager
attempts to build or re-build a cache of drivers, based on the next module’s hardware requirements.
Required functionalities have their drivers cached immediately at this step, while optional input types are
cached at runtime when requested. In the case where any of these steps fail, the Module Manager reverts
to loading the default and repeats this process. It should be noted that the Module Manager will load the
default module upon the current module’s completion, unless directed otherwise.

Once the setup process is completed, a semaphore is handed off to the running module so that it

4



may signal the Module Manager for when it is finished executing. The design uses the Java provided
CountdownLatch to implement this functionality. At this step, control is completely given to the running
Module until terminated (Appendix B.3).

Once the running module terminates, control is returned to the Module Manager and the process of
refreshing the internal list of modules is repeated. This is done in case JARs were added, removed or
modified during the runtime of the previous module. Finally, the Module Manager repeats the full cycle
of loading the next module as explained above. (Figure 2)

4.2 Modules

Modules are designed to be self-contained, flexible programs that can be dynamically executed. To do
this, modules are required to supply their own manifest file indicating meta-information such as title,
author, and icon, as well as dependencies on both hardware and other modules. The manifest provides
the dependency information so that the Module Manager is able to check whether the module is able to
be executed.

One key aspect about modules is that they are loaded independently of the graphical library the
modules use. This allows developers to use any graphical library currently supported by the framework,
such as Processing or AWT. This was accomplished through interfaces that abstract those details away
from the Module Manager. This is also done through delegation to a ModuleHelper, which helps facilitate
communication with a Module and the Module Manager. An example of data a module may request via
the ModuleHelper is the list of modules currently loaded or access to the configuration file store.

4.3 Input Services

The hardware management subsystem is responsible for managing the physical devices supported, their
drivers, and the functionalities that they may support. In order to abstract such detail away, a Hardware
Manager manifest is provided to help drive the design. The manifest consists of several key pieces of
information such as the functionalities and drivers supported, as well as their classpaths.

In order to abstract away the physical device from its capabilities, the team split input services into
two main components: functionalities and drivers. Functionalities represent a form of data that can
be generated by a device, such as depth imaging. Drivers bridge the communication between a piece of
hardware and the functionalities it supports. In this manner, an end developer only has to worry about the
type of data they need, and not the device that is producing it. However, the design does accommodate
for retrieving specific data from a specific driver, should it be desired. Since functionality and driver
information is loaded from the Hardware Manager manifest, SDK contributors can also expand support
for additional devices with their own classes.

Since a device can support multiple functionalities, a driver cache was implemented to reduce overhead
in reinitializing a driver. In between the execution of modules, the driver cache is cleared and rebuilt
from the next module’s requested input types. In order for a driver to be cached, a series of validations
are necessary. First and foremost, the functionality supported by the driver must be required by the
next module. For optional functionalities, this check is performed at runtime. Second, a given driver
must adhere to the interface contracts for the functionalities specified. Finally, an instantiated driver
must indicate whether it is available for use, a process specific to the device with which the driver is
communicating. If all of these prerequisites are met, the driver is placed in the cache for the module’s use.

During the runtime of a module, a developer may retrieve any driver residing in the cache. To give
developers as much control over their data as possible, a driver list is provided for a given functionality.
This allows the developer to inflate any driver from the list. It’s important to note that since the driver
cache is cleared in between module runtimes, the developer does not need to be concerned about prior
drivers’ data being persistent.

While the developer should not have to be concerned about which device is providing data, data from
drivers can come in two forms. One is a continuous stream of data, while the other is an event-driven
system. The continuous stream of data may be accessed whenever the developer wishes. However, for the
event-driven data, a developer must use the Event Manager to retrieve data. Drivers automatically send

5



their event information to the event management system, and the developer must register receivers that
capture these events. (Figure 3)

6



5 Design and Implementation Decisions

During the development of this project, the team made several decisions that helped to shape the design of
the framework. One of the first decisions was to continue using Maven as a software project management
platform as used by the Readings in Software Engineering class. After initial exploration into the platform
and the following learning curve, the team found Maven to be a flexible and adaptable tool for handling
external libraries.

The team wanted to let the end developers have the ability to configure the framework to meet their
needs. This led to a configuration-driven design implemented using the XML specification. By using an
XML design, the team enabled the developer to dynamically gather information about individual modules
without having to modify the source code itself, increasing flexibility.

The idea of the Module was also introduced early in the development process. By creating a module
archetype, the SDK could abstract away the graphical library the visualization wanted to use, if any. By
doing this, the team was able to keep the Recycler Robbie game running, despite it using AWT for its
graphical interface rather than Processing.

Additionally, due to the decision to use an XML design, the team felt the need for modules to enforce
a contract indicating its intents and characteristics before being loaded by the Module Manager. This was
to ensure that a module’s dependencies can be satisfied by the Hardware Manager and also be represented
in a human-friendly manner. This led to the creation of the Module manifest for the modules that are
loaded into the Module Manager.

The Module Manager was necessary because the team wanted a way to manage a group of modules and
the lifecycle of the exhibit. By having the Module Manager handle these aspects, the interaction between
modules and their runtimes was greatly simplified. The Module Manager keeps track of several aspects
of the exhibit, primarily the dependencies that modules require. This enables the manager to ensure that
modules have an environment that satisfies these requirements. The Module Manager relies significantly
on its communication with the Hardware Manager to verify these dependencies.

The necessity to be able to swap out various devices led to the creation of the Input Services layer.
Input Services needed to abstract away the physical devices and their drivers, so that modules can utilize
the data they want without regard to which device is supplying that data. By having the Input Services
abstract the specifics of a particular device driver into data interfaces, the polling of data by a Module can
be standardized.

Input Services has two separate entry paths. Drivers can supply a continuous stream of data, or can
be given at discrete intervals, such as depth imaging. Thus, the design needed to satisfy both methods of
retrieval. For a continuous stream of data, modules are able to poll the driver at their leisure. However,
for data given at specific times, an Event Manager had to be created to coordinate the propagation of
data to receivers. The Event Manager’s queuing system was designed to handle arbitrary data to aid
expandability.

The decision to centralize the receiving and reading of hardware data led to the creation of the Hard-
ware Manager. The Hardware Manager was necessary to control access to the devices as well as provide
information about the environment in which the modules run. An additional XML manifest file had to be
loaded in order for the Hardware Manager to be configured with devices.

The team was directed by the clients to use source control and chose to use Github for a central
repository over other services. Github was selected because of the team’s familiarity with the inner workings
of Git, its friendliness towards open-source projects, and the preexistent Colorado School of Mines Github
organization. Since one of the additional client requirements was to publish the framework as an open-
source project, the team found Github to be an ideal distribution system that met this need.

A further requirement set forth by the client was to have proper documentation and support for new
developers to contribute to the SDK and develop their own modules. The decision to choose Github also
addressed this requirement through the use of Github’s wiki structure and integrated issue tracking.

7



6 Results

Our goal for this project was to create an open-source, interactive, visualization platform that can support
user contributed visualizations, and be demonstrated at any number of locations on campus. This was
achieved by creating an underlying architecture that would allow for a number of arbitrary programs,
referred to as modules, to be able to run on the system. Modules can be created any number of ways,
including the use of Processing 1.5.1 as per the client requirements. The exhibit also demonstrates the
ability to catch the attention of passersby through eye- catching visualizations on the launcher.

The modules, along with the other configuration driven aspects of the framework, can also be deployed
remotely such that physical access to the hardware our project is hosted on is not necessary. Devices
will still be connected physically. Through this, we complete the requirement to provide a turn-key based
system. Our project does meet all the requirements requested by the client.

The framework’s code base has all been documented, both through the Github Wiki and JavaDoc
(Appendix C). The Github wiki also consists of setup & installation, tutorials, samples, and API docu-
mentation.

Due to the complexity of the base architecture, the client requested that we deprioritize refactoring the
Recycler Robbie game in favor of optimizing our design; because at that point, changes to recycler would
have been in the form of a port. That said, the game still performs under our design.

Other aspects that could not be completed or tested due to time constraints were support for Processing
2.0 (Appendix B.1), OpenGL (Appendix B.2), and other sensory devices (such as web cameras). In
addition, there are no safeguards to prevent inappropriate or malicious submissions. Neither the Twitter
feed nor the acmX game could be integrated into the system. The Twitter feed was purely due to time
constraints in that the information necessary to continue was provided too late into our timeline. The
completed acmX game relied on the aforementioned OpenGL and scene map data. Although the scene
map data is supported by OpenNI the team did not have this functionality integrated with the Input
Services layer at the time.

8



Appendix

A Figures and Tables

Figure 1: System Architecture

9



Figure 2: System Flow

10



Figure 3: System Interaction

11



B Continuing Development

B.1 Processing 2.0

Processing 2.0 is actually a drop in replacement for Processing 1.5.1 and does not affect the Module
Manager or other external controls. With that said, the one issue is that Processing 2.0 does not keep the
same API as Processing 1.5.1 and as such any Modules developed when referencing 1.5.1 will break when
deployed into an Interface SDK environment built with 2.0. This effect dominoes to the point that the
simple fix of replacing the library will force all Modules to use the version of Processing the Interface SDK
was compiled against.

There may be a couple solutions around this. The straight forward one is to provide two different
versions of the Interface SDK (and maintain them). This would bring support for Processing 2.0 around
much quicker. The downfall would be the extra work to maintain two versions. In addition, this solution
provides no remedy for not being able to run Modules using Processing 1.5.1/2.0 side by side.

A different solution would be to split ProcessingModule into two separate abstract Modules. One for
processing 2.0 and one for processing 1.5.1. The clear advantage over the former being that with this type
of setup it should be possible to run Modules extending from either version ProcessingModule side by side
allowing for a single version of the Interface SDK. However, there is a cost. The Processing library would
no longer be a direct dependency as there would be library conflicts. Instead, the Processing core.jar file
would be dynamically loaded in by either the ModuleManager or better yet, the specific version of the
ProcessingModule. The additional downside to this is that developers may be exposed to the dependency
on the Processing library if they can no longer reference just the Interface SDK since the Processing library
is no longer a static dependency.

A possible final solution would be to find the differences between the Processing 2.0/1.5.1 libraries and
provide a conversion layer of a sort between them. Although this may seem to be too time consuming,
Processing does seem to have a good document describing the major API differences.

At any rate, continued development should be sure to reference the ”processing 2 support” branch on
Github (Appendix C).

B.2 OpenGL

First, for those wondering what OpenGL is exactly, OpenGL is an interface for interacting with the
rendering power of a discrete or integrated graphics processing unit(s). Typically using OpenGL is much
more performant than using just the CPU and gives developers more advanced rendering techniques.
There are competing libraries such as Microsoft’s DirectX, however OpenGL has more widespread usage
including applications on the mobile front. With that said, most of the aforementioned comes from the
Team’s limited experience with OpenGL.

OpenGL is used by Processing 1.5.1 and was even further integrated into Processing 2.0. OpenGL
is used any 3D drawing in Processing 2.0 and can also be used to speed up drawing 2D sketches. Since
OpenGL is so integrated into Processing, the Team felt it is a necessary goal to include access to this
powerful library from within ProcessingModule.

However, OpenGL, since it talks directly with hardware, is architecture and operating system depen-
dent. For this reason, the system dependent library is left out of the actual Processing dependency for
OpenGL, JOGL. These external libraries are usually shared object files, however, with JOGL, the authors
were kind enough to wrap these up in some JAR files. Looking into the Processing source code this is
exactly the route the developers went (Appendix C).

Ideally, from the perspective of the Module Manager and the lifecycle of the Modules, these extra
libraries should be hidden in the details of the ProcessingModule. With that said, the Team did not have
enough time to investigate this option further and instead tried to get something working by including
these libraries directly when running the Module Manager via setting the classpath. This seemed to work
just fine as an OpenGL module could run (granted that the Module was based on Processing 2.0) and exit
without crashing. However, when the time of this report was written there seemed to be a critical bug
in the shutdown process of OpenGL as once an OpenGL Module was run, on following runs it would no
longer render. From this and from the holding off on integrating of Processing 2.0, we were unable to work

12



on OpenGL support further.

B.3 Module Exception Handling

One future plan for the Interface SDK was to be able to handle exceptions occurring while executing a
Module. This would ensure that if a Module developer was careless and his/her Module threw, for example,
a NullPointerException, the Interface SDK would be able to catch this exception and continue execution
with the default Module.

This feature would not be difficult to support in the CommandlineModule as we would be able to bond
a Thread UncaughtExceptionHandler with the run thread to catch any exceptions. However, this does
not work as well with a ProcessingModule because when the ProcessingModule is run, the parent PApplet
class will spawn a new Animation thread, among other threads, and so the bond to the exception handler
is lost.

To remedy the above, the Team has two possible solutions. One would be to modify the source for the
Processing PApplet so that child classes, such as ProcessingModule, would be able to override the behavior
for uncaught exception handling. This would not affect the user directly as the Interface SDK has the
core.jar for Processing wrapped up with it, so it would be a simple swap out of this JAR file. With that
said, the downside is that up and to the writting of this report, the Team has been able to keep with a
vanilla, unmodified Processing core.jar file which makes it easy to keep up with Processing development.

Another possible solution that has not received much consideration is to instead have the run loop for
the Interface SDK spawn new processes instead of new Threads. In theory, the Interface SDK would not
care about a Module spawning any number of threads as all exceptions in the threads should be passed
up to the Module process at which point the Interface SDK can decide to handle the situation. With the
current state, the Interface SDK would most likely move execution to the next Module unless the currently
executing Module is the default Module at which point the Interface SDK would exit.

B.4 Maven Repository Hosting

Maven is a powerful tool for developing Java projects. It provides a central toolkit for building code,
managing dependencies, testing, packaging, deployment and much more. Overall the Team has found it
very useful.

The one aspect that sent us a speed bump was how to manage third-party libraries in form of JARs.
Maven has offered the typical solution of being able to install these JARs locally so that any projects built
with maven on that local machine can reference the installed library. This may work well for those whose
development platforms are unchanging, however, with our use case we would like to make the development
environment as portable as possible so would like to refrain from having the user to manage this.

In order to accomplish this, the Team found the solution of deploying our own Maven repository on a
file hosting web service called Amazon S3. After referencing the repository in the Maven pom file, Maven
will exhibit the following behavior; it will first look for dependencies installed on the local machine, it
will then look for dependencies in the Team’s custom Maven repository, and finally it will look for unmet
dependencies in the Maven Central Repository. This behavior is ideal because the Team can maintain a
single location for all the third party JARs and does not have to include these in the Github code repository.

In addition to easier management of third party JARs, hosting our own Maven repository allows the
Team to easily deploy versioned JARs of the Interface SDK. This makes Module developers lives even
easier as they can always find a specific version of the Interface SDK on the Amazon S3 instance. For
Maven users this is especially useful as the only update to their pom files is to dictate the version of the
Interface SDK they would like to build against.

However, the Amazon S3 instance is currently owned and maintained, not by Colorado School of Mines,
but by one of authors and original developers. Although this student is certainly going to stick around as
a lead maintainer, this is less than ideal.

Going forward, there are a couple solutions. One would be to transition to using the Maven Central
Repository which has free Maven project hosting. Open source advocates would argue this is a necessity of
a true open source codebase. This would keep the ease of access to versions of the Interface SDK, however,
there are some issues with referencing third party libraries. One issue is that we would have to ensure that

13



we are not breaking any licenses by publishing third party libraries to the Maven Central Repository. In
addition, we cannot continue to reference our own Maven repository as the Maven Central Repository has
a policy of not including references to external repositories. This would bring us back to having the user
install third party JARs. This may not be the end of the world, but certainly it would be an inconvenience.

A more ideal solution may be to encourage the School to setup their own Maven repository. This could
entail either deploying their own server on campus or signing up for a service such as Amazon S3. The
cost of the latter may be negligible in the grand scheme of things but this decision is not one the Team
alone can make. This solution would maintain the current state of the project and all of the benefits of
hosting our own repository.

14



C Relevant Links

1. Interface SDK Github
https://github.com/ColoradoSchoolOfMines/interface_sdk

2. Interface SDK Wiki
https://github.com/ColoradoSchoolOfMines/interface_sdk/wiki

3. Interface SDK JavaDoc
https://s3-us-west-2.amazonaws.com/acmx.mines.edu/site/apidocs/index.html

4. Processing 2 Support Branch
https://github.com/ColoradoSchoolOfMines/interface_sdk/tree/processing_2_support

5. Processing Library https://github.com/processing/processing

15

https://github.com/ColoradoSchoolOfMines/interface_sdk
https://github.com/ColoradoSchoolOfMines/interface_sdk/wiki
https://s3-us-west-2.amazonaws.com/acmx.mines.edu/site/apidocs/index.html
https://github.com/ColoradoSchoolOfMines/interface_sdk/tree/processing_2_support
https://github.com/processing/processing

	Introduction
	Client Description
	Product Vision

	Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture
	Technical Design
	System Flow
	Modules
	Input Services

	Design and Implementation Decisions
	Results
	Figures and Tables
	Continuing Development
	Relevant Links


