

Symplified I: Windows User Identity
Matthew McNew and Lex Hubbard

i

Table of Contents

Abstract 1

Introduction to the Project 2

Project Description 2

Requirements Specification 2

Functional Requirements 2

Non-functional Requirements 3

Use Cases 3

Design 4

 Design Summary 4

 SimpleIWA ASP.Net Web Page Design 5

 Installer and Configuration Utility Design 6

 UML Diagrams 8

Implementation Details and Results 10

Scope 12

Conclusions and Future Directions 12

Glossary 13

References 14

1

Abstract

Single Sign On (SSO) allows users to access multiple services with only one login

instead of having to repetitively enter their username and password at every prompt. SSO curtails

phishing attempts, prevents password fatigue, and decreases calls to Information Technology

(IT) Departments. This project involves enabling SSO through an Identity Router (IdR) that

exists in a separate domain from Windows Active Directory.

The company, Symplified, allows SSO to cloud applications through their IdR. The goal

of this project is to create software that Symplified’s clients can deploy. This software (referred

to from here as SimpleIWA) authenticates Windows users from the client’s Active Directory

(AD) domain to the IdR that exists in a separate domain. SimpleIWA pulls user information from

an Active Directory on a separate domain from Symplified’s on site IdR. SimpleIWA installs an

ASP.Net page that exists on a Windows Internet Information Services (IIS) server and processes

requests using Integrated Windows Authentication (IWA). At the user’s request, SimpleIWA

pulls Windows user information from AD and a signed Security Access Markup Language

(SAML) document is generated and sent to the IdR. This process is seamless without any user

interaction and it is invisible to the user.

SimpleIWA has to be deployed to client IIS servers. Therefore SimpleIWA is packaged

for distribution with a configurable Visual Studio Installer. SimpleIWA has been tested and

documented with different configurations.

2

Introduction to the Project
Symplified provides its clients with an IdR that allows secure access to cloud applications

through SSO. Symplifed’s IdR, known as Single Point, authenticates users on the client’s

network through Active Directory. The current system requires that the IdR be in the same

domain as the client’s Active Directory and many of Symplified’s clients would prefer to create

a separate domain for the IdR.

Project Description
The solution was named SimpleIWA. With SimpleIWA, Symplifed’s IdR redirects a

user’s browser to the SimpleIWA ASP.Net page on the client’s IIS server. SimpleIWA utilizes

IWA to identify the user’s information. SimpleIWA pulls user attributes from Active Directory

including the user’s Username and any other attributes the client prefers to include in the

response. Then SimpleIWA generates a SAML document with the user information and any

additional attributes. Before submitting the document a configuration file is read that includes an

Assertion Customer Service URL (ACS URL), a Relay State, and the location of the private key.

The SAML document is signed with the private key and it is submitted through the user’s

browser to the ACS URL on the IdR.

 SimpleIWA is deployed using a Visual Studio Installer. The installer checks for IIS, .Net,

and IWA. It offers links to tutorials and download pages if these requirements are not present on

the current system. Once these requirements are confirmed, SimpleIWA Installer enables the

correct .Net version for the webpage to run under. The installer also requests information from

the user. The first tab has fields for the requirements: an ACS URL, an Issuer, an Audience, and

a Relay State. The second tab contains a check box list for LDAP fields to be pulled from AD for

authentication. The last tab allows the user to provide the private key location.

Requirements Specification

Functional Requirements

SimpleIWA must process user identity from IWA and create a SAML assertion that will be sent

to an Identity Router. In addition SimpleIWA must be packaged allowing it to be easily distributed.

Specific requirements include:

○ Maintain the current system’s SSO functionality

○ Accept user browser requests

○ Identify Active Directory users with IWA

○ Require the user to log into Active Directory if the user identity cannot be provided by

IWA

○ Create a SAML assertion that verifies the user and provides other, to be determined

attributes of that user

3

○ Send the SAML assertion to the IdR over HTTP Post

○ Create an installer to install the product on different servers

○ Allow the application to be configured in the installer

Non-Functional Requirements

○ Allow SimpleIWA to be deployed on any domain within the network

○ Write SimpleIWA in C# with ASP.Net

○ SimpleIWA must install and run on a Windows Server running IIS

Architecture Diagram

Use Cases
SimpleIWA will allow a specific configuration: the client’s Active Directory will be able to send

user authentication to the IdR that Symplified provides while the IdR is in a separate domain.

Installation

1. Display installation screen

 A. Prompt for Install

 i. Verify IWA, IIS, and ASP.Net

 a. Provide links and installation information

 ii. Enable most recent version of .Net in IIS

 iii. Prompt for configuration information

 iv. Exit

 B. Prompt for Exit

 i. Exit

2. SimpleIWA is installed on Server waiting for requests

Single Sign On Authentication

1. User logs on to Active Directory with username/password combination

2. User’s browser requests SimpleIWA

 A. Software authenticates the user

 B. User is redirected to the intended location

Authentication With User Not Logged into Active Directory.

1. User’s browser requests SimpleIWA

 A. Software asks the user for username/password combination

 B. User logs in with Active Directory username/password combination

 c. User is redirected to the intended location

2. User enters incorrect username/password combination

A. Software asks for username/password combination again

4

Design

Design Summary

SimpleIWA contains two distinct components. The first component is the Default

ASP.NET webpage written in C# that generates the SAML assertion. The second component is

the installer and configuration utility.

The Default ASP.NET Web Page sets up the web page and calls the other processes when

the page is loaded. The modules in this web page are outlined in Figure 1. Module A reads

information on the ACS URL, relay state, and the location of the private key from a

configuration file. Module B identifies the user and pulls information from Active Directory.

Module C takes the user information from the first process and generates a signed and base 64

encoded SAML Assertion. The default ASP.NET webpage sends the assertion and relay state

over HTTP POST to the ACS URL.

The installer installs and configures the application for IIS. The modules of the installer

are described in Figure 2. A Visual Studio Installer project is used to install the application and

detect dependencies. The installer utilizes a C# Custom Action to configure and setup the

application. This Custom Action can also be separated into modules. Write Modules. Modules:

Configure IIS, Config Form,

5

ASP.NET Web Page Design

Figure 1. The Components of SimpleIWA

Default ASP.NET Web Page

The Default ASP.NET Web Page is called on the server. This web page specifies an

XHTML Splash Screen for the user. The Page Load function calls the Read Configuration

Module to load the SimpleIWA configuration and the Determine User Information from Active

Directory Module to identify user information. Using this information, a SAML assertion is

created with the Generate SAML Assertion Module. Then an XHTML form that has two

attributes is created. One attribute is the RelayState. The other attribute is the Base 64 encoded

SAML document. Javascript is used to automatically submit the form to the ACS URL. The

Relay State and the ACS URL are obtained from the Configuration File.

Module A - Read Configuration

There is an XML configuration file in the root of the ASP.Net application. This module

reads the configuration file and obtains important configuration details for other components.

Existing .Net XML serialization libraries are used to read and parse the file. The configuration

file contains five unique fields. One field describes the ACS URL which is where SimpleIWA

submits the SAML assertion. Another field describes the relay state of application. This field is

also used when the SAML assertion is submitted and redirects the browser. Another field

6

describes the location of the private key. This configuration detail is used when the SAML

assertion is digitally signed in the Generate SAML Assertion module. A field describes the

Issuer which informs the IdR of the SAML Assertion origin. And another field describes the

NameID which is the format of the username.

Module B - Determine User information from Active Directory

SimpleIWA pulls user information from Active Directory. The information pulled

includes the user’s login name and any information Symplified would like to use to authenticate

that user to the IdR. The required attributes to pull from Active Directory are specified in the

configuration file. SimpleIWA pulls these fields from LDAP (Lightweight Directory Access

Protocol) using a modular function on each requested field. In addition to the user’s login,

SimpleIWA is able to authenticate the user by pulling their information from AD such as the full

name, email address, memberships, etc.

Module C - Generate SAML Assertion

The SAML assertion is generated with the user information that is provided by Active

Directory in Module B. To generate the SAML document, existing Code Project libraries were

modified to reduce unnecessary work. Given attributes, a SAML XML document of type

XmlDocument in System.Xml is generated. The private key is read and opened. Existing

libraries in System.Xml.Cryptography are used to generate a digital signature with the private

key. Then the XML document and the Signature are Base 64 bit encoded. The product of this

operation is used by the ASP.NET webpage to submit the SAML Assertion.

7

Installer and Configuration Utility Design

Figure 2 The Components of the SimpleIWA Installer

Virtual Studio Installer

The Virtual Studio Installer is configured using the Virtual Studio Interface. The installer

checks for dependencies by querying the Windows Registry for the required registry entries. If a

dependency is missing, instructions are provided on how to install the necessary dependency. A

branded interface in the installer allows the user to configure where SimpleIWA will be installed

and which AppPool to use on IIS. After these preliminary configuration details have been set up

SimpleIWA is installed at the specified path. At the end of the install process a Custom Action is

executed. This Custom Action configures the system and provides a User Interface to configure

the SimpleIWA configuration file. This Custom Action is described in greater detail below in

three different processes.

8

Process A - Configure the System for SimpleIWA

 At first, the Custom Action configures the System for SimpleIWA. This is done by

identifying the version of IIS on which the installation is being performed. On IIS 6 dynamic

content is enabled. On IIS 7 ISAPI restrictions are removed. On all platforms the correct version

of .NET is set on the AppPool running SimpleIWA. In addition, Windows Authentication is

enabled in IIS and the Network Service user account is given write permissions to the Windows

Temp Directory.

Process B - Configuration Interface

 A tabbed Windows Form is displayed to provide an interface to configure the

SimpleIWA configuration file. The interface allows users to specify the ACS URL, the Relay

State, the Audience, the Issuer, and the SAML Subject. A different tab allows the users to

specify which Active Directory attributes to include in the SAML assertion. A third tab allows

users to choose a Certificate containing a private key with a file section dialog. The file selection

dialog runs on a separate thread from the installer. When the form is submitted, Process C takes

place and the Configuration File is Generated

Process C - Generate Configuration File

The configuration file is generated using the C# XML serialization library. Each field of

the form is read and added to the XML document as an element of the appropriate type. Each

Active Directory attribute from the checkbox list is used as a key to find the appropriate LDAP

attribute value in the LDAP dictionary inside of the Windows Form. The location of the private

key is requested and both the key and the configuration file are added to SimpleIWA’s

installation location.

UML Diagrams

Two simplified UML diagrams are shown below. The diagram, in Figure 3 illustrates the

different modules in the SimpleIWA ASP.NET webpage. The user’s web browser is directed to

the Default WebPage. When this happens the Page_Load function is executed. This function

initializes and utilizes the other classes as described in detail above. The ConfigFile class is used

to obtain configuration attributes. The UserInfo class is utilized to obtain IWA user identity

information. The SamlBuilder class is used to generate a SAML assertion.

9

Figure 3 UML Diagram for the SimpleIWA ASP.NET webpage

 Figure 4 illustrates the basic design of the SimpleIWA Installer Custom Action. The

Custom Action class is used by the Visual Studio Installer. At the end of the install process the

Installer function is executed. This function configures the System for the SimpleIWA

application. The function also initializes a ConfigForm that allows the user to configure

SimpleIWA. The ConfigForm class uses the ConfigWriter to write the SimpleIWA configuration

file.

Figure 4 UML Diagram for the SimpleIWA Installer Custom Action

10

Implementation Details and Results
 SimpleIWA was written in Visual Studio 2010 using C# and ASP.Net. Windows IIS uses

virtual directories that run ASP.Net web pages and there was quite a lot of functionality for

SimpleIWA’s requirements already existing in Visual Studio C#.

 The configuration file follows an XML schema. This was a natural choice for the

configuration file because it follows the pattern of other IIS and ASP.NET configuration files. In

addition, SimpleIWA is required to produce a SAML Assertion, a protocol that is based on

XML.

 SimpleIWA utilizes a modified SAML Library written in C# and provided by The Code

Project Open License. A library was used to generate SAML to avoid rewriting publicly

available code. This library was chosen because it was well documented. In addition, the

simplicity of the library allowed it to be modified and integrated into SimpleIWA.

 The private key file chooser dialog in the configuration utility runs on a separate thread

from the installer thread. This is because the Windows OpenFileDialog class is required to run

on a thread with a single threaded apartment state. The installer thread does not satisfy this

requirement. A separate thread is created to use the Windows class and provide familiar

functionality to the user.

 Windows Installer XML (WIX) was considered as the basis for SimpleIWA’s installer,

but after research, it was determined that the learning curve for WIX would be too steep.

Ultimately, A Visual Studio Installer fit the scope of the project. A Visual Studio Installer is not

as powerful as using a WIX installer. However, it offers a complete ASP.NET installer that can

be configured with Custom Actions to add additional functionality. This additional functionality

was essential to allow SimpleIWA to be configured in the install process.

Integration Testing

 SimpleIWA was tested with six different Active Directory servers. The servers were

running on different versions of Windows and had different releases of IIS. In addition

SimpleIWA was tested with Symplified’s Single Point Studio Software. SimpleIWA works

smoothly in all the different testing environments. Many of the different testing environments

have different dependencies. The SimpleIWA installer identifies when these dependencies are

missing and provides instructions to install them.

The SimpleIWA application requires .NET version 4. IIS is also required. However, only

IIS versions 6 and 7 have been tested. During the installer the AppPool and the virtual directory

are specified. The installer will enable dynamic content on the specified AppPool. When using

IIS 7 a few different role services are required. The Windows Authentication role service and

11

compatibility components role service must be installed. When these dependencies are not

installed the installer provides instructions on how to install them.

Servers

 SimpleIWA Installer and SimpleIWA functionality were tested on the following servers

through a Remote Desktop Connection.

Windows 2003 DC with IIS 6.0 (testlified.com)

 VNC beavis.bdr.symplified.net:5922

Windows 2003 DC with IIS 6.0 (symp.testlified.com)

 VNC beavis.bdr.symplified.net:5929

Windows 2008 DC with IIS 7.0 (symplified.sqa)

 VNC beavis.bdr.symplified.net:5915

Windows 2008 DC with IIS 7.0 (qa1.symplified.sqa)

 VNC beavis.bdr.symplified.net:5917

Windows 2008 DC with IIS 7.0 (qa1.symplified.sqa)

 VNC beavis.bdr.symplified.net:5954

Windows 2008 DC with IIS 7.0 (topherific.com)

Remote Desktop 10.200.20.80

Clients

 SimpleIWA functionality was tested with the following clients through a VNC

connection.

Windows Vista Business

 VNC beavis.bdr.symplified.net:5950

Windows 7 Professional

VNC beavis.bdr.symplified.net:5964

Windows XP Proffessional

VNC beavis.bdr.symplified.net:5938

Windows 7 Professional

Remote Desktop 10.200.20.81

12

Scope and Project Progression
SSO functionality was required. Using IWA to verify Active Directory users was

required. SimpleIWA had to create a SAML assertion that would allow the IdR to verify a user’s

access to cloud applications. The IdR had to be able to do this from a separate domain than the

client’s Active Directory domain. Clients had to be able to deploy SimpleIWA on any domain in

their network.

Symplified required an installation UI for SimpleIWA. Ultimately, time allowed for this

to fall into the scope of this project.

 SimpleIWA met all of the goals that Symplified set out for it to accomplish. One of the

main aspects of SimpleIWA was creating an application that would make it easier for

Symplified’s clients to obtain the functionality they desired through Symplified’s service. With

that in mind, additional functionality was added to the product to make it more user friendly,

especially with the installation. SimpleIWA deals with IIS in a user friendly way by providing

helpful links and installing necessary components itself. It also reconfigures IIS on its own to

make the experience as automated as possible for the client administrators. In addition,

SimpleIWA is very easy to reconfigure. The configuration form can be opened and resubmitted

at any time after SimpleIWA is installed.

Conclusion
 SimpleIWA is a product with massive potential to simplify SSO tasks for users operating

on Windows Networks. The software has been demonstrated to Symplified’s Development and

Marketing Team. These employees are very excited to bring the product to Symplified’s clients.

Some desired functionality was outside of the scope of the project. It would be beneficial

for SimpleIWA to log access requests to enable more effective system maintenance. In addition a

more portable installer could be created using WIX. This installer could have greater

functionality and be easily expanded to different versions of Windows and IIS.

Even without the functionality that was outside the project scope, SimpleIWA

development used many different and useful technologies. We realized that Visual Studio can be

used to collaborate multidimensional products. We learned that SAML has a wide range of

useful functionalities that can be utilized in many Internet applications to provide an easier

method of authentication. Finally, we discovered that free fall design techniques are difficult to

work this and pursuing an agile philosophy can speed up and enhance development.

13

Glossary

Active Directory (AD) - Created by Microsoft, provides many services to a network, a central

service for administrators to reside over a network and provide security

Active Server Pages (ASP) - A server side script engine for dynamically generated web

applications

ASP.Net - Web application framework for building web applications

Assertion Consumer Service URL (ACS URL) - The location where the SAML assertion is

sent, the Service Provider’s authentication location

Extensible Markup Language (XML) - A protocol for creating documents that are easily read

by machines

HTTP (Hypertext Transfer Protocol) - A networking protocol and the basis for the Worldwide

Web

HTTP POST - An HTTP request method that allows for an arbitrary length of data

Identity Provider (IDP) - A service that registers URL identities and provides authentication

Identity Router (IdR) - A device that allows internal network identities to be associated with

external network identities

Internet Information Services (IIS) - Web server application by Microsoft. Administration

Pack adds ASP.Net authorization

Integrated Windows Authentication (IWA) - Allows automatic authentication between Active

Directory aware applications

LDAP (Lightweight Directory Access Protocol) - A network directory protocol for accessing

and editing information over TCP/IP

Security Assertion Markup Language (SAML) - An XML based publicly available standard

for authenticating across domains between an Identity Provider which provides assertions and a

Service Provider which consumes them

Service Provider (SP) - An entity that provides a service, a business that provides a server

(either hardware or virtual), an entity that hosts a web application

Single Sign On (SSO) - The ability for a system to verify a user to multiple resources with only

one prompt for a username/password combination

Software as a Service (SaaS) - A software delivery model where software is hosted on the

internet (cloud) and accessed by users, typically through a web browser

Uniform Resource Locator (URL) - A Uniform Resource Identifier with a location and

instructions on how to get to that location, http://www.mines.edu is an example of a URL

Windows Installer XML (WIX) - Free software that builds Windows Installers (.msi) from

XML documents

http://www.mines.edu/
http://www.mines.edu/
http://www.mines.edu/
http://www.mines.edu/
http://www.mines.edu/

14

References

Speight, David W. “Performing a SAML Post with C#.” The Code Project. March 8, 2010. May

19, 2011. <http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx>

http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx
http://www.codeproject.com/KB/aspnet/DotNetSamlPost.aspx

