

Newmont 4- TabletMapper

Justin Pinkul, Michael Coughlin

June 23, 2011

Newmont 4, ii

Abstract
 Newmont Mining employs many different scientists and engineers in their mining

operations, responsible for gathering data to be used in company operations. This data is often

a simple set of polygons representing geologic areas, that is stored in a database and later

analyzed using an existing system. This information is currently gathered using pen-and-paper

techniques, but can be extended to a mobile application based off the Android platform.

 This project aimed to create an Android application that measures and uploads this data

into a database in a format that is compatible with the current system in use by Newmont. The

primary goals of this project were to 1) create an easy to use interface contained in an Android

application that allows the mapping of geological segments using GPS, and 2) sync the

collected data with an external database. To accomplish this, we used several tools, including

the Android SDK and Eclipse IDE in order to develop the application as well as SQL and SQLite

databases to store the data. We primarily programmed this project using Java, C++ and XML.

 During this semester, we developed an Android application that takes advantage of the

GPS module to gather geologic data. We also developed an external Java application that

interfaces with a SQL database that is used to store the data in a form that is compatible with

the current system in use by Newmont Mining. Several integration tests of this entire system

were run successfully, and the project meets all of the requirements that were initially set forth.

Newmont 4, iii

Table of Contents

Contents

NEWMONT 4- TABLETMAPPER ... I

INTRODUCTION .. 1

REQUIREMENTS ... 1

HIGH LEVEL DESIGN ... 1

System Architecture .. 2

The Android Tablet .. 3

The External Java Application .. 6

Database Schema ... 6

Description of Modules ... 8

IMPLEMENTATION AND RESULTS ... 10

Implementation Details .. 10

Results ... 11

CONCLUSION AND FUTURE DIRECTION ... 12

Future Work ... 12

Lessons Learned ... 13

GLOSSARY ... 14

Newmont 4, 1

Introduction
The Newmont 4 project is intended to solve Newmont Mining’s issues of recording data in the

field. Currently, Newmont must collect their data by hand and then enter it into a single

computer upon completion. This project will develop an application for the Android platform that

will measure data in the form of polygons that represent boundaries of waste or mineral

deposits, which will be measured by geologists in the field. Once all the data is collected, the

application will then synchronize the data with an external database in use by Newmont.

Requirements
Our client requested that we create an Android application that is designed for use on a tablet.

This program should be able to track the users location and allow the user to record that

location, as well as allow user to add lines and polygons between recorded locations.

Our client defined these requirements for the project:

Functional Requirements

1. Record user location as they walk around a geological site.

2. Allow the user to create lines and polygons using their location as vertices.

3. Save the location and polygon data onto the tablet device.

4. Sync the data from the device with the existing system.

5. Read in a topographical background map from a binary DIG file.

6. Output the data into Newmont’s currently existing system.

Non-Functional Requirements

1. Using Android and the Android Software development kit (SDK).

2. Programming using Java and Extensible Markup Language (XML), which are the

languages that Android uses.

3. Using a SQLite database to store the data.

4. Using Newmont’s dynamically linked libraries (DLLs) to read DIG files.

5. Utilize OpenGL ES for rendering.

Optional Requirements

1. Provide the option of mapping continuously while walking.

2. Store attributes related to the polygons in the form of text.

3. Create and store video or pictures related to the polygons using an on-board camera.

High Level Design
Currently Newmont uses mapping software that requires powerful machines, which is a problem

because it requires full sized computers in the field. Their existing software is capable of many

advanced manipulations of geological data, however this is not necessary in the field where the

data is being collected, and our Android application aimed to fill that gap.

Newmont 4, 2

Our Android application acquires location data from the on-board Global Positioning System

(GPS) module in the Android device, and stores data in a local Structured Query Language

Light (SQLite) database. We also wrote a Java application that is intended to be installed on a

computer that the Android device will be connected to over the Internet or a local network.

Additionally, prior to being used in the field, the application will need to be loaded with the

topological map for the area, as well as any existing polygons that have already been collected.

This data will be loaded onto the application using the external Java application before the

device leaves a Newmont office.

When connected to a computer over a network, an installed Java application will establish a

connection to the Android device and retrieve any data that is stored in the database. This data

is then processed and stored in one of Newmont's databases in a format compatible with the

existing system.

System Architecture

Figure 1: System Architecture Diagram

In order for the java application to read in the topographical map, from a DIG file (a custom

Newmont binary file), it needed to be able to use Newmont’s existing code, provided in the form

of several DLLs. Theses DLLs are written in C/C++ and cannot be directly used by a Java

application, therefore there must also be a Java Native Interface (JNI) bridge between the

Newmont 4, 3

application and Newmont’s DLLs. This meant that a C++ program needed to be developed,

while complying with JNI conventions, to call functions from the DLLs and read in the map.

Figure 2: System Architecture Diagram, Java application

The Android Tablet

The UML diagram for the Android program has three distinct sections: user interaction, data

management and graphics rendering, distinguishable by red, green and blue respectively in

Figure 3 below. The EventManager class, whose purpose is to receive events from the user

interaction section and forward those events to either the data management or rendering

sections, connects these sections. The four data types, Point, Line, OreconData and DigData,

that store shape information are also shared between the three sections and can be seen in the

center of Figure 3.

Newmont 4, 4

Figure 3: Android UML diagram

The user interaction section, shown below in Figure 4, consists of the basic screens and buttons

the user sees. This section is the source of all user interaction, ranging from pressing a button

to triggering the GPS by moving. This section relies heavily upon Android libraries and contains

most of the Android-specific code.

Figure 4: Android UML diagram, User interaction section

The graphics rendering section, shown below in Figure 5, is responsible for all OpenGL ES

rendering. This includes features such as displaying point, line, and polygon data and causing

the main display to zoom in and out. The physical entities (i.e., points, lines and polygons) are

displayed relative to each other, meaning that a point 20 feet away from the user’s current

location would appear to be twice as far as a point that is only 10 feet away.

Newmont 4, 5

Figure 5: Android UML diagram, Graphics rendering section

The data management section, shown below in Figure 6, controls data persistence and

synchronization. The primary functions of this section are storing information on the local

database and transferring that data to the external java application for synchronization, once a

network connection is established.

Figure 6: Android UML diagram, Data management section

Newmont 4, 6

The External Java Application

The UML diagram for the External Java Application, shown below in Figure 7, represents the

user interface and the various interactions with other components. The user interface consists of

three tabs, one for sending data to the tablet, another for syncing data from the tablet with

Newmont’s OreconDB (database for storing geologic data), and the third for changing

application settings. These panels then use the Communications class to request their various

tasks; the Communications class then connects to the tablet and/or OreconDB to make the

necessary changes. The Communications class is also responsible for requesting DIG file

information from the native DigReader class, which then uses the JNI to connect to the C++

program and read the file into a DigData object.

Figure 7: Java application UML diagram

Database Schema

On-board SQLite database

The on-board SQLite database is used to store point and polygon data for the particular area

that is being studied. The database has tables to store points, lines and polygons, as well as an

origin point that is used to calculate the distance, in feet, of the other points in relation to this

origin.

● The Origin table has one entry for each set of data that has been loaded onto the tablet.

This entry contains two doubles representing the latitude and longitude of the origin

point.

● For each point in the points table a unique id and two doubles, that represent the x and y

distances from the origin in feet, are stored.

Newmont 4, 7

● The lines table stores a unique id for each line, the id of the starting and ending points of

the line, and the id of a polygon that the line belongs to, or null if the line does not belong

to a polygon.

● The polygon table stores a unique id for each polygon, the polygon type, and any notes

that are associated with the polygon.

Figure 8: SQLite database schema

Newmont’s OreconDB

Newmont’s OreconDB is a fairly complex database, however, much of the stored information is

unnecessary for our purposes. The relative portion of the schema can be seen below in Figure

9. The schema consists of three tables that define where data is located and an additional table

for the data itself. A site is the broadest definition of an area and typically defines what part of

the globe you are in. Pits are more specific, as they indicate the part of a site that is being

examined, and each site can have multiple pits. The pit bench is the last step in locating where

to place the data and refers to the elevation inside of a pit. The polygon table itself has fields for

what bench it belongs to, point data, creation date, creator and the geologic zone it is classified

as.

Newmont 4, 8

Figure 9: OreconDB SQL Server database schema

Description of Modules

External Java Application

This application is the portion of the project that is responsible for communication with the tablet

device. The application loads the initial data before collection and reads the collected data after

collection is complete.

Uploading Existing Data to Tablet

The application will read a topological area map from an existing Newmont file and then load the

area map into the Android application. The application will also load existing point, line and

polygon data from Newmont’s OreconDB and store this data into the SQLite database on the

Android device.

Syncing Collected Data from Tablet

The application will also read point and polygon data from the SQLite database on the Android

device and upload it to Newmont’s OreconDB, while leaving any unchanged data intact. Table 1

shows the SQL command needed to insert data into OreconDB as well as the SQL statements

needed to present the user with the proper choices of where to store the data to.

OreconDB SQL statements

Action Data SQL

List available sites none Select SITE_ID, SITE_DESCRIPTION from SITE

List available pits int site_id Select PIT_ID, PIT_DESCRIPTION from PIT where
SITE_ID=site_id

List available benches int pit_id Select PIT_BENCH_ID, BENCH from PIT_BENCH
where PIT_ID=pit_id

Newmont 4, 9

Insert polygon int bench_id,
string points,
string creator,
string zone

Insert into GEOLOGIC_POLYGON

(PIT_BENCH_ID, POLYGON, CREATION_DATE,

CREATOR_INITIALS, GEOLOGIC_ZONE)

values(bench_id, points, CURRENT_TIMESTAMP,

creator, zone)

Table 1: SQL Server statements

On-board SQLite database

The on-board SQLite database will be used to store point and polygon data for the particular

area that is being studied. Table 2 shows a list of actions that the SQLite database is

responsible for, what data is needed in order to make that action, and the SQL call(s) that will

result.

SQL statements

Action Data SQL

Add point double x, y Insert into Points (X, Y) values(x, y)

Load point int point ID Select (X, Y) from Points where _ID=ID

Add single Line point ID start, end Insert into Lines (Start_ID, End_ID) values(start, end)

Add a polygon Set of line IDs

from 1 to n,

Polygon ID, String

type and notes

Insert into Polygons (Types, Notes) values(type,notes)

Insert into Lines (X, Y, Poly_ID) values(x1, y1, poly_id)

Insert into Lines (X, Y, Poly_ID) values(x2, y2, poly_id)

…...

Insert into Lines (X, Y, Poly_ID) values(xn, yn, poly_id)

Load polygon int Polygon ID Select (Start_ID, End_ID) from Lines where poly_id=ID

Set Origin double longitude,

latitude

Insert into Origin (Latitude, Longitude) values(latitude,

longitude)

Read Origin none Select (Latitude, Longitude) from Origin

Table 2: SQLite statements

TabletMapper Application

This is the application that will run on the Android device. It has three key functions: the user

interface, the interaction and storage of data on the database and the interaction with the on-

board GPS module.

Newmont 4, 10

User Interface

The user interface of the application was implemented using OpenGL ES, in addition to

Android's layout XML, due to instruction from our client. The main screen has a

topological map as its background, as well as several buttons, including buttons to pan

the screen, zoom in and out, and add or remove points, lines and polygons. For the

OpenGL ES portions, we implemented a subclass of GLSurfaceView, called

MapGLSurfaceView, which handles most of the user interface on screen. The

MapGLSurfaceView is associated with a renderer that is responsible for creating each

point and rendering it on the MapGLSurfaceView object. This occurs whenever the user

specifies to add a point, by pressing the add point button. This renderer is also

responsible for adding lines and polygons, as well as removing points, lines and

polygons, when the appropriate buttons are pressed by the user.

GPS interaction

The GPS module is accessed whenever the map screen is opened by the

MappingActivity class, which is responsible for creating the map. The MappingActivity

class requests updates from the GPS module and creates a listener that handles any

future changes in location. When the user presses the add point button, the click listener

in the MappingActivity class requests the current location from the location listener,

creates a point, and then adds it to the database. The MapGLSurfaceViewer renderer

then retrieves a new list of total points from the database and refreshes the screen with

these points the next time the screen repaints.

Data interactions

All external interactions with the on board database are handled inside the TabletMapper

application by either the SendingSocketServer or ReceivingSocketSecketServer

classes. These classes allow the external Java application to retrieve data from the

tablet as well as upload topographical maps and existing polygon data.

All internal interactions with the on-board database, such as storing data while it is being

collected, will be handled by the GeoDatabase. The GeoDataManager class will contain

an instance of a GeoDatabase object. Whenever a point, line or polygon is created or

deleted, the information is sent to the GeoDatabase from the GeoDataManager, using

this GeoDatabase object. Once that information reaches the GeoDatabase, it will be

used in the manner described above in the On-board SQLite module section.

Implementation and Results

Implementation Details

1. For this project, Newmont provided us source code for accessing their custom data

types in the form of C++ libraries and a wrapper written in C#, which was the only way

for us to access the binary files that needed to be transferred to the tablet. However, in

order to access this code using Java, we were required to utilize the Java Native

Newmont 4, 11

Interface, which made calling the functions in the wrapper impractical. Therefore, we

were forced to utilize Newmont’s C++ libraries directly and ignore the wrapper functions.

The code for this interaction was implemented in the external Java application, as we

determined that learning the native interface in Android would be an inefficient use of our

time at that stage of the project.

2. Due to driver issues and limitations of the tablet hardware we were provided for testing,

the communication between the tablet and the external Java application is achieved

using a network connection, instead of through universal serial bus (USB). This is

accomplished by opening a ServerSocket on the Android device using a specific port,

and then connecting to that same port using the external Java application. In this

situation, the Android device acts as the server, and the Java application acts as the

client, due to limitations of the Android operating system.

3. When reading in data from Newmont’s OreconDB, a problem arose when attempting to

render the downloaded data in the correct position on the screen. This is due to the fact

that the data is not stored in an absolute coordinate system, but rather in a relative

system that depends on the map that the data is being drawn upon. In order to solve

this, the map for the data that is being used is required, in order to calculate the correct

offsets necessary to center and display the data. However, this requires that the data

must be sent with a topological map, or else the data will not display properly.

4. The data that in Newmont’s OreconDB is stored in a specific data type known as a

Geometry object, specific to Microsoft SQL Server. However, it is possible to query the

database to return the data in file format, similar to that of XML, inside of a Geometry

Markup Language (GML) file. This file can then be parsed by Java in the same manner

as an XML file, which allows us to read the data that is stored in the file. The data itself is

nothing more than a series or multiple series of two dimensional x-y points and a

description of how they are connected. Each series of points describes a single polygon,

and the description of how they are connected is almost always “Linear Ring,” which

means to connect the points with a line.

5. In order to store and render the topographical map and the OreconDB data, while

keeping it separate from collected data, we decided to store the data in a file and allow

the render to read the data from these files. This not only keeps our data in the on board

database separated from the already existing data, but it also allows us to not use SQL

queries when receiving data, which results in a much faster transfer of data to the

Android device.

Results

In this project, we were successful in meeting all of the functional and non-functional

requirements that our client gave to us. However, we were not able to meet any of the stretch

goals for the project, which are now included in future work for this project.

Newmont 4, 12

Functional Requirements

Utilizing native support in Android for accessing the GPS module, we were able to query the

module to extract the user’s current GPS location, and we used OpenGL ES to display a point

on the screen, in relation to an origin, that represents the user’s GPS coordinate. After multiple

points were collected, we were able to use OpenGL ES and Android to recognize touch events

on the screen, and select the points that the user was pressing nearest, in order to construct a

polygon. This polygon could then be sent to a computer and received with our external Java

application, which would then upload this data to OreconDB using SQL statements. The

external Java application was also able to read a DIG binary file using the JNI and Newmont’s

DLLs to extract the topological map and then send this data to the Android application

Non-Functional Requirements

As the program was successfully deployed onto Android devices, we were able to use the

Android SDK successfully, as well as Java and XML in order to program for Android. We were

also able to successfully use a SQLite database to store our data and utilize the JNI to read

Newmont’s existing libraries.

Integration Test

The integration test was performed to ensure that all the different modules operate correctly

together and the results indicate that our product is functioning successfully. The steps to our

test are as follows:

1. Host a local SQL Server database designed to mimic Newmont’s OreconDB.

2. Install the Android program and Java application onto a test tablet and test computer.

3. Connect the tablet to the computer and download data from the SQL Server database

onto the tablet.

4. Edit the transferred data and collect new data using the tablet.

5. Sync the tablet with the SQL Server database using the Java application.

6. Verify both the tablet and database data.

Conclusion and Future Direction

Future Work

Due to time constraints and unforeseen issues with using certain tools and languages, we were

not able to meet many of the stretch goals supplied by our client. These goals, and several

ideas discovered while writing the project, constitute future work that can be done to continue

the project, and are as follows:

 Add support for working with multiple sites.

 Add support for dragging shapes to correct GPS positions.

 Add support for reading topographical maps from a SD card.

 Add functionality to automatically close polygons while drawing.

 Add functionality to upload certain shapes to different benches in OreconDB.

Newmont 4, 13

 Add support for recording elevations at each point.

 Add functionality for continuously collecting points while walking

 Devise a method for storing line segments in OreconDB.

 Add support for the creation polygons pre-existing lines.

 Allow for modification of existing data in OreconDB.

 Add functionality for displaying the user’s position relative to the rest of the map.

Lessons Learned

 Time Estimates- Due to our lack of knowledge about several tools that we needed to

use, we spent a large amount of time installing, configuring and learning these tools, and

languages, while our time using them for a useful purpose was lessened

 Microsoft Visual Studio 2010 Ultimate- In order to view and write C++ and C Sharp code,

we needed to use Visual Studio. However, many of the settings we had to enable were

not located in the actual code, but in libraries and build paths, which required us to seek

the help of developers at Newmont, and consumed a very large amount of time. We

spent more time configuring Visual Studio than writing code with Visual Studio.

 Microsoft SQL Server and Microsoft SQL Server R2- In order to view the database data,

as well as to view any changes we made once the database was setup, we were

required to install Microsoft SQL Server. However, the database file we were provided

was created using SQL Server R2, which is incompatible with SQL Server.

Unfortunately, the installation of SQL Server takes more than an hour, and uses so

much of the system’s resources that code cannot be written at the same time. As we

were required to be at Newmont’s offices in order to receive assistance with the

database setup, we lost several hours installing SQL Server and SQL Server R2, and

importing the 10-gigabyte database file into SQL Server R2.

 OpenGL ES- Due to a recommendation from our client, we used OpenGL rendering in

order to draw all of the graphics displayed on our mapping activity. However, we had no

prior knowledge about OpenGL, so we spent hours researching OpenGL, then even

more hours implemented before we were able to achieve a workable result.

 Android Emulator- While developing for this project, we made much use of the Android

emulator provided with the Android SDK in order to test our application. However, it soon

became apparent that the emulator was very inefficient and not a true representation of

an Android device. It became much more efficient to create an Android application and

deploy it to an Android device than to use the emulator.

Glossary

Android A software package for mobile applications that includes an operating

system, and is commonly used in smart phones and tablet computers.

DLL Dynamically linked library - a C/C++ file that is used for linking code at

run-time.

DIG Files Binary flat files used by Newmont to store topographical maps and other

geologic data.

GPS Global Positioning System - a series of 24 satellites that can be used to

calculate your location anywhere on earth.

GML Geography Markup Language- a variation of XML that is used to format

geographic information.

JNI Java native interface - Java’s support for calling code that is written in

another programming language.

OreconDB A SQL Server R2 database used to store geological information.

Relational Database A set of software that stores information and relations between that

information. The links are stored inside of tables and the relations are

represented by the rows of those tables.

SDK Software Development Kit - a set of tools that is used when creating

applications.

SQL Structured Query Language - a standard language used to manipulate

relational databases.

SQLite A less functional form of SQL that is used to store data locally.

SQL Server Microsoft’s version of a SQL database.

Tablet A complete mobile computer integrated into hardware that usually

incorporates a touch screen, also known as a tablet computer.

USB Universal Serial Bus - a common interface for connecting peripheral

devices to a host computer.

Newmont 4, 15

XML Extensible Markup Language - a document format that is used to specify

layout formats in Android.

	Newmont 4- TabletMapper
	Abstract
	Introduction
	Requirements
	High Level Design
	System Architecture
	The Android Tablet
	The External Java Application
	Database Schema
	On-board SQLite database
	Newmont’s OreconDB

	Description of Modules
	External Java Application

	Implementation and Results
	Implementation Details
	Results

	Conclusion and Future Direction
	Future Work
	Lessons Learned

	Glossary

