

JCA: Code Archons

ModsDesigns
Final Report

Josh Lamson
Caitlin Hurley
Aaron Lebahn
June 23, 2011

2

1. Abstract

In the working world, too often parents are overly busy and therefore unable to give their

children and loved ones the attention they deserve. The ModsDesigns project is to design an

Android application based on the client’s website, www.textcards4families.com, which provides

“a simple yet fun way for anyone, mainly parents, to communicate with their loved ones,

especially their kids.” By converting this website to a mobile format, parents will be able to

readily send messages of love and encouragement.

The primary purpose of this application is to allow users to browse, search, and send

textcards™, which are greeting cards sent via picture message, to their loved ones that quickly

and easily provide the love and encouragement a busy daily life can prevent. These textcards™

can all be displayed or searched and displayed by category, based on the user’s search criteria,

selected, then sent to a chosen recipient immediately or at a later time. The application also

allows the user to view account information, such as a list of their recipients and their current

subscription plan, and general information about the website, which includes the FAQ’s, Terms

of Use, and Privacy Policy pages.

The solution to creating this application was to develop using Java, Google’s Android

development tools, and XML as well as modify the existing PHP code. The languages used to

develop the application allowed for formatting, user interface design, and to POST and GET

information to and from the website. In order to communicate with the existing database,

modifications and additions were made to the website’s existing PHP code. These modifications

and additions were also added to allow our application access to the existing functionality of the

website, such as creating an account, logging in, and searching for textcards™.

The result of this project is a functional, portable version of the website that users can

access “on the go”. However, due to time constraints, there are still minor bugs and additions

that were unable to be addressed. These include memory leaks, utilizing in-app billing, creating

notifications to inform the users of the status of their textcard™, and allowing for customizable

application settings. Fortunately, the application in its current state does meet all of the client’s

primary goals.

3

Table of Contents
1. Abstract ... 2

2. Introduction .. 4

3. Requirements .. 4

3.1 Functional .. 4

3.1.1 Mobile Application .. 4

3.1.2 Textcard™ Interactions .. 6

3.1.3 Database ... 6

3.1.4 Information Syncing ... 6

3.2 Non-Functional Requirements ... 7

3.2.1 Android Market ... 7

3.2.2 Advertising ... 7

4. Detailed Design ... 7

4.1 Architecture Design ... 7

4.2 Application Flow and State Diagrams ... 8

4.3 UML Diagrams ... 11

4.4 Database Schema .. 14

5. Implementation Details and Results... 15

5.1 Language Choice .. 15

5.2 Library Usage ... 16

5.3 Tool Usage ... 16

5.4 Issues ... 16

6. Conclusions and Future Directions ... 17

6.1 Lessons Learned... 17

6.2 Future Directions ... 17

7. Glossary ... 18

8. References .. 18

4

2. Introduction

Our client, Jill Modesitt, has asked our group to create a mobile application based on her

current website, textcards4families.com. This website provides a fun, simple way for people to

communicate with their loved ones using textcards™, greeting cards sent via picture message.

Previously, the only way to access these textcards™ was through the website; however, the

mobile application creates a more accessible method to send them.

 This application was created for the Android platform with the goal to make it as similar

to the website as possible. Users are able to register, log in, send and search textcards™, and

change many settings on their account as necessary. These changes are then reflected on both the

Android application and the website, allowing these two mediums to be used interchangeably.

 Another goal for this application was to easily and effectively integrate with the current

database (Figure 3) with minute changes. This goal was set in place with the knowledge that the

database can only be accessed by the website. To account for this obstacle, additions were made

to the PHP code running the website. By making these modifications, the application is able to

use the website to access the needed information from the database.

 By creating a mobile application that mimics the website, we will enable users to send

these textcards™ at any time and any place. This will create a boom in our client’s business by

moving the service to a medium that is currently on an upswing of popularity.

3. Requirements

3.1 Functional

 The four main components of this project are: to create a mobile application that can

replace or supplement the running website, to allow for interaction between the user and the

textcards™, to enable the application to access the current database, and to permit the application

to sync with account and informational aspects of the website. Throughout each of these, POST

and GET requests were used to communicate with the website. This means that when the

application needs information from the website, it GETs this through a GET request. When the

application needs to send information to the website, which can result in the website sending

information back to the application through GET requests, the app POSTs the necessary

information to the website.

3.1.1 Mobile Application

The first and most important requirement of this project was the creation of an Android

application that can act either as a nearly complete replacement of the website or simply as a

5

supplement to the website. The application and website have linked interactions which allows

users to make changes to either medium and see those changes displayed on the other. The

application has the following Activities:

● Log In

○ This page has two options: enter a user name and password to log in or go to the

register page to create an account.

○ After the initial log in, the app then automatically logs the user in each time the

app is opened.

● Register - the user is prompted to enter the required information and agree to the Terms

of Use. After they have submitted their information, it is sent to the website which then

sends a confirmation email to the email provided. After confirming, the user is able to log

in on the Log In page.

● Home - this page displays the available free textcards™, the user’s last sent textcard™,

and the user’s queued textcards™ (up to 5 are displayed on this screen)

● Gallery - when this page is initially opened, a gallery view of about one hundred

textcards™ (loaded one-by-one) is shown. The user can scroll through these cards or go

to the Search Textcards™ page, accessed from the Menu, to look for textcards™ by

category.

○ Search Textcards™ - this page GETs the list of categories and sub-categories

from the database, then fills in the titles and drop-down boxes from the acquired

list. The user can then choose which categories they would like to search, submit,

and see the results back in the Gallery.

● My Account - this activity has all information concerning the user’s personal account

○ My Subscription - this page displays the list of available subscriptions and

descriptions about each of them. If the user has a subscription, the number of

textcards™ and time remaining are displayed.

○ My Recipients - a list of the user’s contacts and their information are displayed on

this page. The user is also able to delete contacts, and add contacts, accessed

through the Menu.

■ Delete Recipients – the user is able to delete contacts simply by tapping on

the recipient’s information. A dialog appears to ensure this is what the

user wants to do. If so, the contact is deleted from the My Recipients page

and the database. Otherwise, it remains in place.

■ Add Recipients - the user simply enters contact information for their

recipient, submits, and the app POSTs information to the website which

adds the recipient to the database. When the user goes back to the My

Recipients page, their new recipient is displayed.

○ Queue and History - the app GETs lists of up to ten of the user’s queued, sent, and

failed textcards™ and displays them on this page.

6

○ Change Password - this page allows the user to enter their current and new

password they wish to change to.

● Information - this activity has all general information about the website and product.

○ About Us - a brief description about the goal of the website and application is

displayed on this page.

○ FAQs - The FAQs page shows the Frequently Asked Questions, retrieved directly

from the website.

○ Charities - this page shows a list of the current charities users are able to donate

to. Each charity has its own logo, mission statement, and description displayed.

○ Privacy Policy - the Privacy Policy page describes the privacy policy concerning

the user’s personal information.

○ Terms of Use - this page displays the legal information regarding the Terms of

Use

○ Contact Us - the Contact Us page allows users to contact us with questions,

comments, or request for textcards™.

3.1.2 Textcard™ Interactions

 Interactions between the user and textcards™ is the primary function of the website and

application. Users have the ability to interact with textcards™ in the following ways:

● View free textcards™ on the Home page

● View a gallery of about one hundred free and subscription-only textcards™ in the default

order

● Search for textcards™ by category

● Send textcards™ to a chosen recipient instantly or at a scheduled time

3.1.3 Database

 Database access was required throughout the entire application. The following

components and functionality acquired information from the database:

● All aspects of textcards™

● Accessing and editing account information

● Accessing general information about the application and website

3.1.4 Information Syncing

In addition, there are the less complex requirements to simply sync information from the

website to the application. These pages are synced solely from the website, with no interaction

with the database at all:

● FAQs

● Terms of Use

● Privacy Policy

7

3.2 Non-Functional Requirements

 The non-functional requirements included the process of publishing the Android

application and advertising the application via the website.

3.2.1 Android Market

Uploading the application to the Android Market has a step-by-step routine that requires

attention to detail.

1. Step 1: create a digital signature, it was required to sign the application with a

cryptographic private key and ensure this key’s validity period will end after

October 22, 2033.

2. Step 2 was to define a version code, used for identifying the application

internally, and a version name, to display to users as the application’s version.

These are the more technical steps in this uploading process.

3. Step 3: create a details page, is used so users know what exactly the application is

and why they should use it. The details page contains an application description

and screenshots that show the main aspects of the application. A proper logo and

label that met Google’s requirements for application upload was also created for

this process.

4. The final step, Step 4, was to compile a complete .apk file for the market. The

.apk file is what is uploaded to the market and made available to users.

3.2.2 Advertising

 Advertising the application on the current website is also very important and still being

worked on.

A QR Code was generated to allow users to easily access the application via mobile

device and will be placed on the website as soon as possible. A URL to the application may also

be placed on the website for user’s who wish to access the application on their computer.

These methods of advertisements will be especially beneficial for current users of the

website. They will quickly be informed of this new development and will easily be able to access

the application.

4. Detailed Design

4.1 Architecture Design

The majority of this architecture was set in place by a previous group of developers. The

only new contribution to the system is the use of an Android Application acting as the medium

between the user and the functionality of the website. Everything beyond the Website (Database,

Event Scheduler, etc) is unmodified by the application, and can only be accessed through POST

requests to the website. The website will then return XML for the Android to parse and display

8

to the user. The website had to be modified in order for it to return XML when being accessed by

the App. The website distinguishes it’s response by looking at a POST variable called

“response_type.” This variable can either be “html” or “xml”. The PHP files look at this POSTed

variable, and either returns a browser readable HTML or parsable XML. Many of the objects

retrieved in code were given a function called toXML(). This function takes all the information

about a single object (A contact, a textcard™, etc.), and outputs it to the returned file in an XML

format. From these, we can create objects in Java, and use them to the application’s needs.

Figure 1: System Architecture

The System Architecture design for the Textcards4families System

4.2 Application Flow and State Diagrams

 The following state diagrams describe the Activity flow of the application. An Activity is

a single, focused thing the user can do. More often than not, an Activity is a single screen that

can be viewed on the Android device. The first diagram, Figure 4, describes the entry flow of the

program. The application is opened to a login screen. From there, the user can either register and

create an account, or login using a previously created account. While registering, the user must

fill out a form, and agree to the Terms of Use, which can be access from the menu on that page.

If the user is returning to the app after logging in and closing the app, it will remember the users

login information, and permit access to the main application automatically. Once logged in the

main application begins.

9

Figure 2: Overview State Diagram

This is an overview of the entire application structure.

 Figure 5 shows the main application flow. It consists of four tabs that can be navigated

between by pressing the corresponding tab. The home tab displays the currently offered free

textcards™, the last textcard™ sent, and a shortened queue for the user. The gallery tab initially

displays the first 100 textcards™. To see additional cards, the user may open the menu, and be

redirected to a search page. From here, they use numerous drop-down boxes to select search

criteria. Any one of the textcards™ can be clicked and sent. Once a textcard™ is clicked, a larger

preview of that textcard™ is sent. Under the large preview is a button to send the textcard™. The

user is then greeted by a form involving drop-down boxes, radio buttons, and text boxes. The

user can then send the card given their inputted criteria.

Figure 3: Tabs State Diagram

This shows the transitions between separate tabs

 Figure 6 shows the sub-menus of the “My Account” tab. From this screen, you can view

a more detailed Queue and History or your subscription plans. the user can also view, add, or

10

delete your recipients, and change your password. The Subscription page displays the user’s

current active subscription plan, and the available subscription plans for purpose. The My

Recipients allows the user to view, delete, and add contacts to their account. The Queue and

History page displays up to ten queued textcards™, the ten most recently sent cards, and ten

failed sends. Last, the change password screen show a very simple form to change their

password.

Figure 4: “My Account” State Diagram

This shows the transitions between menu items in the “My Account” tab.

 Figure 7 shows the sub-menus for the Information tab. From there, you can view site

information, FAQs, partnering charities information, Terms of Use, and Privacy policy. All of

this information is fetched from the website, and displayed to match the web content exactly.

The user can also contact textcards4families with questions, concerns, or textcard™ requests by

filling out a simple form and submitting.

11

Figure 5: “Information” Tab State Diagram

This shows the transitions between menu items in the information tab.

4.3 UML Diagrams

 Besides one class for each activity shown above in the state diagrams, there are frequent

helper classes that are used for retrieving and displaying information from the website and

displaying. Figure 8 is an example of this process, specifically for the charity information

activity. The process begins when the InformationCharsActivity is started. When this activity is

created, it creates an UpdateCharitiesUI object, and calls execute() on it. This class extends an

abstract class named UpdateUI, which extends what is called an AsyncTask. An AsyncTask

“enables proper and easy use of the UI thread. This class allows to perform background

operations and publish results on the UI thread without having to manipulate threads and/or

handlers.” (from developer.android.com reference). This is important because it allows the app to

(a) multitask, and (b) do work without the UI freezing and becoming un-usable. UpdateUI takes

an Activity for reference, data to POST, a website URL to send the request to, and lastly a

DataHandler used to parse XML responses from POST requests. It uses these to perform the

fetching and parsing operations in a separate thread, while displaying a progress dialog in the

12

foreground to alert the user of background activity. The UpdateCharitiesUI specifically is passed

a CharityParsingHandler. UpdateCharitiesUI then POSTs to the correct PHP file, and receives an

XML response, like this one:

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE CHARITY [<!ENTITY nbsp

" ">]>

<Charities>

<Charity id="1" name="Families First"

url="http://www.familiesfirstcolorado.org"

logoPath="charities/families_first.png">

Mission: To provide services which

strengthen families, empower parents, nurture children, and

end the cycle of child abuse and neglect.

</Charity>

<Charity id="6" name="Women's Crisis & Family Outreach

Center (WCFOC)" url="http://www.twcfoc.org/"

logoPath="charities/wcfoc.jpg">

Mission: WCFOC is dedicated to

reducing domestic violence and family conflict through

advocacy, empowerment, violence prevention and

intervention, services and education. Since its inception,

WCFOC has provided programs and services to any domestic

violence victim requesting those services and to the region

at-large.

If you would like to make a donation

straight to WCFOC, please click here: <a

href="https://www.blacktie-

colorado.com/online_sales/nonprofit_donation.cfm?id=1974"

target="_blank">
<img src="images/donate.jpg"

width="80" height="20" border="0" />

</Charity>

</Charities>

Based on this XML response, the passed CharityParsingHandler will create a new Charity object

for every “Charity” tag. All of these objects are placed into an ArrayList of Charities, which is

then used by UpdateCharitiesUI. Based on information in the Charity, and hard-coded formatting

information, the charities are placed into certain Views and added to the Activity, so they can be

viewed by the user. This process is used throughout the entire application, for syncing any

displayable information, such as FAQs, Contacts, Terms of Use, Privacy Policy, Subscription

plans, and just about anything that can be printed to the screen.

13

Figure 6: Website Communication Framework (Charity)

This UML encompasses all classes used in requesting, parsing, storing, and displaying Charity information

 There are two slight modifications to the process taken above. The first of these is when

data needs to be placed inside of a specialized layout, such as a GridView, ListView, or Spinner.

This process is started by setting the Adapter of the View being loaded (In the below UML, the

Gallery GridView). The Adapter for each case extends an Abstract XmlObjectAdapter, which is

standardized to work with the Views mentioned above. This adapter accepts a new

UpdateAdapter object, which is executed similarly to the UpdateCharityUI above. From here the

processes become more alike. The UpdateAdapter is handed a DataHandler which parses XML

and creates an ArrayList of XmlObjects, in this case Textcard objects. The ArrayList is then used

by the adapter, which in this case, loads the data about the textcards™ all at once, then loads

their thumbnails one at a time.

Figure 7: Website Communication Framework (Gallery Adapter)

This UML encompasses all classes used in requesting, parsing, storing, and displaying textcards™ in the Galley Tab

14

The other modification to the above examples is requests that only receive a status

message in return. Actions like logging in or out, sending feedback, sending textcards™, and the

like, only receive either a <success> tag or an <error> tag, and some message describing the

response, like “Invalid Email.” These executed actions are handled in a very similar manner, but

instead of creating ArrayLists of options, they return only a string result, and allow access to a

Boolean that indicates the success or failure of the result.

4.4 Database Schema

 The database has been put in place by the developers of the website. It stores everything

from user information, time zone information, and contact information to non-user based data

such as textcard™ information and account transactions. All of the relationships between data is

shown using “Crow’s Foot” notation, which is described in the Glossary. The Database is only

accessed through what are called Stored Procedures. These are called through special PHP

functions defined in a Database PHP class. They can be used to obtain lists of IDs, or insert data

into a relation, or do anything that can be done with MySQL.

15

Figure 8: Existing Database

This is a diagram of the current database that the website is utilizing. Our goal is to allow the Android application to

use this database with zero changes.

5. Implementation Details and Results

5.1 Language Choice

Several languages were used in the project. The primary language used was Java. This

choice was directly related to the fact that the application was developed for the Android

platform. The client did not specify whether the application must be developed for Android or

16

iOS. Since everyone on the development team was familiar with Java and not Objective C,

developing an Android application was chosen.

XML was also used to serve two functions. The first was to provide layouts for the

graphical user interface. This is the method that Android requires in order to specify static GUI

design. The Java code for Android also allows for programmatic construction of the GUI;

however, XML provides a simpler and more stable method to accomplish the same result.

The second use of XML was to communicate between the website and the app. Several

reasons exist for this. First, the use of XML within the Android environment simplified learning.

Second, XML was not only easily generated by the website, but it could also be parsed simply by

the phone.

On the website side, PHP and MySQL were used. This was an easy decision. The app

needed to communicate with the existing database, so MySQL was a must. In addition, since

there was existing PHP code to interface with the database, the additional code was also written

in PHP.

5.2 Library Usage

No libraries were explicitly added to the project, although several libraries were used that

were included in Android. Google provided excellent libraries for graphical design and thread

management that were used. In addition, the Android platform includes an HTTP client library

written by Apache and an XML parser library called SAX. Since we required a method to send

requests to the server and receive responses over HTTP, we needed a library that acted as a

HTTP client, and the Apache client met our needs very well. Secondly, we needed a method to

parse the XML response, and SAX was the only such library included with Android.

5.3 Tool Usage

Eclipse was used as the primary development environment. This was an easy choice as

Google provides a full Android package for eclipse, including emulators for developers who

don’t have android devices. There are other IDEs for Android applications, but Eclipse was the

most highly recommended. Beyond its easy integration with Android, eclipse is also a very

reliable IDE for Java, and most other languages that were involved with the project, including

XML and PHP.

Initially, git and github were to be used as version control for the Android project, but

due to poor eclipse integration, the standby option of subversion was used. Git was still used to

make changes to the website’s PHP code. This was due to the code already existing on github,

and the need for collaboration with the site’s existing webmaster.

5.4 Issues

 One of the final issues with deploying the product onto the Android market was getting

good compatibility with previous Android versions. An Android app must have both a build

17

target and minimum compatible Android Package Index (API). When development began, more

or less random values were picked. When deployment came closer, these values were more

closely observed and changed to reflect the compatibility goals. Changing these values had errors

occurring in about a quarter to a third of the files. Issues included unknown constants for the

minimum API, functions that couldn’t be used anymore, GUI issues, etc.

6. Conclusions and Future Directions

6.1 Lessons Learned

 An ample amount of time was spent working with POSTing and GETting data to and

from the website. All but two of the activities in the application use GET or POST requests in

some way. This was a new experience for our team and took some effort to get familiar with.

One page that uses both GET and POST requests is the SendTextcardActivity. When this activity

is started, the application sends a GET request to the website to retrieve the list of recipients and

greetings used on the website. After the user has filled out the required information and clicks

the submit button, the entered information is POSTed to the website where all actions to send the

textcard™ are completed. However easy the concept of GET and POST requests was to grasp,

getting a handle on the methods to do so required time and effort.

Another obstacle during development that pushed the team’s limits was the occasional

lack of an elegant solution. More often than not, Google has provided a plethora of tools to be

used, and to account for any situation. Despite this, there were moments where there was no

perfect solution to a problem. For example, we had some issues with backwards compatibility.

For older Android versions and smaller less dense screens, textcards™ would appear large,

overlap, and appear incredibly unsightly. After several hours of research, looking for a library or

function to fix our problem, we eventually settled on getting the width of the screen, and doing

some number crunching to set the size of out images. This was hard to do, but we learned the

important lesson that sometimes, things just need to be brute forced.

6.2 Future Directions

 The primary functions of the application are set in place and working properly. The

application very closely mimics the website in design and functionality and meets the primary

goals of the client. Additional features the application may implement are:

● More instructions throughout the App to make the user’s experience with the application

simpler and more enjoyable

● Notifications to inform the user when their textcard™ has successfully sent

● Implement in-app billing

● The ability to customize personal settings

● The ability to add recipients from the phone’s contact book

18

7. Glossary

Activity: A single, focused thing the user can do, that almost always interacts with the user.

Crow’s Foot Notation: A notation used in database diagrams. A line with a crow’s foot on one

end describes the relationship between two tables. The table without the foot contains many of

the tables with the foot.

GET: An HTTP request which asks for the specified representation of an object. This request is

used solely to retrieve information.

POST: An HTTP request which submits data to be processed to an identified resource.

Spinner: a widget similar to a drop-down list for selecting items.

Textcard™: A digital picture, similar to a greeting card, that is delivered as a picture message to

mobile phones or emails.

View: This class represents the basic building block for user interface components. A View

occupies a rectangular area on the screen and is responsible for drawing and event handling.

View is the base class for widgets, which are used to create interactive UI components (buttons,

text fields, etc.).

8. References

Android development information:

http://developer.android.com/index.html

Textcards4families website:

http://www.textcards4families.com

http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/
http://www.textcards4families.com/

