

Team The MACK

Chinyere Isaac-Heslop

 Taylor Wacker

 Andrew Suter-Morris

CONNECT

I. Abstract

 The original CONNECT (Creating Open Networks aNd Expanding Connections

with Technology) project was designed to promote conference attendee interaction. It

allowed these attendees to “CONNECT” with one another, or rather, share their profile

information. This information consisted of a user’s name, organization, conference role,

interest area(s), phone number, and email. The aforementioned information would

traditionally be found on a business card. Attendees could send a connection request by

entering an id and a comment. The original project consisted of a website, an Android

application and support for text messaging, commonly known as SMS (short message

service). Using these tools attendees were able to make connections. The website

allowed users to search for other attendees, to make connections, confirm connections

and to view all of the connections made during that conference. The Android application

also allowed the users to search for other attendees and to initiate connections via id(s)

and an optional comment. It also had support for Bump which allows users to

essentially fist “bump” their phones to transmit the same information. Our goal was to

create a platform for CONNECT on the iPhone as well as provide a proof of concept for

long term social networking implementation with Facebook and/or LinkedIn interaction

with CONNECT.

The focus of our project was creating an iPhone implementation of the existing

CONNECT project. It needed to utilize many of the same features as the Android

platform version, some being “bump” functionality and FAYT (Find As You Type) .The

iPhone program was written in Objective-C using the xCode IDE (Integrated

Development Environment). We also analyzed pre-existing social networking sites and

conceptualized a way to integrate them with this short term networking application so

that CONNECT could have more longevity in the professional process for connecting

individuals. This was done by inserting a Facebook friend request (“add friend”) button

to the corresponding contact on the CONNECT web site's contacts section. The desired

social network integration proof of concept and the iPhone platform were achieved.

It is important to understand some terms and concepts whilst reading this

document. Please refer to the Glossary for definitions of acronyms, explanations of

unfamiliar terms and concepts. There are seemingly simple words like “connection” and

“bump” that are used in a particular and meaningful way. The Glossary is located at the

rear of the paper.

II. Introduction

Our client was Dr. Cynthia Rader. She acquired both her undergraduate and

graduate degrees in computer science from Wright State University in Ohio. Rader, as

her students often call her, received a PhD from CU Boulder before becoming a

professor at CSM.

Rader and a team of CSM students have been working on the CONNECT project

before us. Initially an endeavor focused on interacting with women and minorities,

CONNECT was used to allow conference attendees to “connect” to one another.

Paralleling the trading of old school business cards, CONNECT contacts shared their

profiles and could get each other’s specified information via website or mobile

interaction.

III. Requirements and Specifications

A. System Architecture

The broad CONNECT process starts with the user. The user enters CONNECT

with an Android phone, an iPhone, a website, or any phone with text capabilities. The

android and iPhone apps go through the CONNECT API (Application Programming

Interface) by sending HTTP (Hypertext Transfer Protocol) requests and receiving JSON

(Javascript Object Notation) responses. The API interacts with the Toilers server, which

interacts with the CousinIt server. The CousinIt server houses the MySQL database that

has all the information we need to give back to the end user. The SMS way interacts

with the CousinIt server in much the same way but through a separate backend. There

is also a website that can access all of the information as well. Fig. 1 below is a visual

representation of the aforementioned interactions.

Figure 1: System Architecture of Application

The system architecture diagram is a high level representation of the interactivity

of each major device or point of access to CONNECT. Our project for CONNECT is

focused simply on the iPhone point of access and the Facebook or LinkedIn gateway

(not pictured).

B. Functional Requirements

The system needs to have the following functionality for the iPhone app:

○ log in with provided CONNECT ID and password

○ store log in information in iPhone settings

○ enter a connection to specified IDs

○ enter a comment for IDs

○ confirm connection

○ “bump” with other users to perform connections

○ FAYT to allow for easy searching of users to add

The system needs to have the following functionality for Facebook/LinkedIn

○ proof of concept for sending friend request (“add friend”) button

C. Nonfunctional Requirements

● Data is stored in a MySQL database - schema is already defined. We do not

have access to this database

● Application is constrained to just being written in Objective-C

● Only permitted to be written through xCode

● Must be a member of Apple’s yearly developer program subscription to host on

“App Store”

● Must make use of pre-existing CONNECT API and social networking APIs

● Have to use HTTP for outgoing and JSON for requests.

● Must be developed in Mac OS X

● We only have six weeks for this project.

IV. Design

UML Diagram

Figure 2 shows all of the classes involved in the project. Without going into too

much technical detail, there are a few types of classes. The controller classes

implement all of the graphical interface and its calls. The delegate class handles all of

the controllers. The remaining classes are helper classes that make all of the API calls.

Figure 2: UML of Diagram

Database Schema

 The following is the schema of the database for the CONNECT project that is

relevant to our particular subset. Included are the three of the tables utilized; the

connection_ids table, the connection_members table and the persons table. We did not

develop the database, but these are the tables we had to use.

 connection_ids

 id – primary key for the connection_ids table

 time - the time that the connection was made

 comment - the comment left for the connection

 connection_members

 id - primary key for the connection_members table

 connection_id - this is an attribute that matches a row in the

 connection_ids table. Also known as a foreign key.

person_id - this is an attribute that matches a row in the persons

table

 status - this is the status of the connection

 client - this is the client of the connection

 persons

 id - primary key for the persons table

 first_name - first name of the person

 last_name - last name of the person

 organization - organization that person works with

 email - email of the person

 phone - phone number of the person

 webpage - webpage of the person

 image - profile photo of the person

 address - where the person is located

 zip - see address above

 city - see address above

 state - see address above

 country - see address above

 hashpass - a SHA-1 hash of the password the person made

 reset_code - code for reset

 reset_expire - when person expires, uses date/time.

 admin - flag for if the user is an administrator

role_id - reference to roles tables, person can pick role and get the

whole row

 regid - registration id for user. Used by 3rd party system

regstatus - registration status of user. Active means user can log

into CONNECT

Components and Major Milestones

There are several components to this project: The GUI(Graphical User Interface)

-includes the keyboard and rotation support- see VII. Section for figures, “bump”, Find

As You Type, connection and Facebook/LinkedIn.

The development of each component relies on existing libraries, a part of the

iPhone Framework. The Bump and CONNECT APIs were also utilized to ensure full

functionality. The Stig-JSON framework was used to handle the request and response

system. All of these libraries and APIs have support for the iPhone.

The GUI component consists of what the application actually looks like. There

were no additions in terms of API calls or any other advanced or CONNECT related

code. The GUI allows the user to use the keyboard, as well as rotate the device into

multiple orientations. A user should be able to use the app in a landscape or in portrait

position.

The connection component is the part of the project that will deal with

approximately 90% of our Connect API calls. It handles the connection through the API

to the database. It sends HTTP requests and returns with JSON responses for parsing.

The http requests were made via an iPhone library – NSURL – and the JSON

responses were parsed and returned using the Stig-JSON framework. The calls we

used are:

 make_connection – creates a connection between a user and one or more other

users

 check_password – checks and authenticates the user

 confirm_connection – ensures that one user can confirm a connection for an

added level of security

 view_connections – view all pending and confirmed connections

 get_name_list – get all of the names for searching

All of the aforementioned calls were used for the project. There were no

additional calls needed. All of them use HTTP requests and JSON responses to send

and pull the necessary data. See Figure 3 below for an example.

Figure 3: A HTTP request and the resulting JSON response

Following the connection component is the “bump” component. The API for

Bump only needed to transmit an ID to the other device. It did not need to interact with

the CONNECT API.

The FAYT was also implemented. The CONNECT API’s get_name_list call

supports this method of searching. This component connects to the database and

queries the database. The call was made for a Javascript FAYT style. Per the Toilers

Wiki, no additional calls were needed.

The last major development milestone is the Facebook/LinkedIn component. The

goal of this was to extend the lifespan of a connection and to enhance this social

networking experience. This required adding a friend request button on the CONNECT

website. This did not require any additional API calls. Time did not permit us to make an

actual Facebook/LinkedIn application. It would, however, only need the

make_connection, check_password, and get_name_list API calls that have already

been implemented.

Use Cases

1) New User to CONNECT wishes to establish connection

Goal: A conference attendee, Chin, has just received her email with her

CONNECT ID and her password.

 Actors: Chin, Attendee #2, Attendee #3

 Preconditions: Automatic email with log in details sent by CONNECT script

 Trigger: Chin meets another attendee that wants to “connect”:

 Events:

1. Chin meets another attendee with some like-mindedness, she

wants to stay in touch with attendee #2

2. Chin pulls out her trusty iPhone, she however, forgot to enter

her credentials from the email she received

3. She enters them, never having to do so (at this conference

anyways) again.

4. She asks for attendee #2’s id, and is given it

5. She adds that into the box, and adds a comment, “met at

Informational Rugby Coaching Conference - fellow coach, time to steal

some coaching strategies”

6. Attendee #2 confirms this connection

7. Chin never actually meets Attendee #3 but decides that based

on her profile information that she wants to try and meet up

8. She uses the find as you type search method on the iPhone to

bring up Attendee #3’s information again so she can make a connection

9. She adds a comment about similar interests

10. Attendee #3 confirms this connection

 Alternate Flow:

1. ID doesn’t exist, or ID given was false.

1a. Program gives ID not found error, try again

2. Either attendee declines confirmation

2a. Chin receives declined message, and goes off to pout

Post Conditions: Both Chin and the attendee can now check each other’s phone

numbers, and websites to stay in touch

2) Pre-existing user on CONNECT

Goal: A conference attendee, Taylor has been using the CONNECT app on

iPhone and just now notices Bump. With the number of connections he makes,

he wants to start using Bump because his fingers are getting tired.

Actors: Taylor, Attendee #2

Preconditions: Taylor has already registered with CONNECT and has the iPhone

app set up.

Trigger: Taylor’s fingers are tired and he wants to use a different method to

connect

Events:

1. Taylor’s fingers are about to fall off, but he remembers seeing

the Bump button on the application.

2. Taylor meets yet another attendee he wants to connect with

3. He uses the last of his strength in his fingers to press the button

to initiate Bump

4. The other attendee who has just arrived feels like being nice

and hits the Bump button as well

5. Both users then fist “bump” and they just made a connection

6. Connection was confirmed via Bump

Alternate Flow:

1. Bump did not work correctly and missed the connection

1a. Taylor’s finger falls off, but he uses another one to initiate Bump

again

2a. Once Bump works properly, connection is made

Post Condition: Taylor and attendee # 2 can now view each other’s information.

They can grab phone numbers and other vital contact information to stay in

touch.

3) Pre-existing CONNECT User wants to add multiple connections

Goal: A conference attendee, Andrew, has just met a group of individuals that he

wants to befriend/connect with because he likes to network

Actors: Andrew, Attendee group

Preconditions: Everybody has CONNECT setup, on any number of mobile

devices

Trigger: Andrew walks into a group of Mobile Development Junkies

Events:

1. Andrew meets another group of attendees with some like-

mindedness, he wants to annoy them all

2. Andrew pulls out his old iPhone 4, and and grabs all of their IDs

3. He adds a comment saying “best friends who also like mobile

development”

4. All of the receivers receive the confirmation message and

approve (or deny if they’re mean)

Alternate Flow:

1. ID doesn’t exist, or ID given was false.

1a. Program gives ID not found error, try again

Post Conditions: Both Andrew and the group of attendees can now check each

other’s phone numbers, and websites to stay in touch

4) User is familiar with Facebook and wants to make a connection this way

Goal: A conference attendee, Andrew, has just met a group of individuals that he

wants to befriend/connect with because he likes to network, but he doesn’t

actually have a phone for some odd reason

Actors: Andrew, Attendee group

Preconditions: Everybody has CONNECT setup

Trigger: Andrew walks into a group of Mobile Development Junkies

Events:

1. Andrew meets another group of attendees with some like-

mindedness, he wants to annoy them all

2. Andrew writes down their IDs or information with pen and paper

(What’s that?)

3. He goes to his hotel room after the conference and logs in to the

Facebook Connect application. He adds the IDs.

4. All of the receivers that have not signed up for the Facebook

Connect app receive an application request.

5. Users confirm and now they may share information via

Facebook.

6. This leads to everybody friend requesting each other (note: this

may have to come prior to application request)

Alternate Flow:

1. User declines Facebook connect request

1a. No information is shared

2. User declines friend request

2a. Again, no information is shared

5) Use case for LinkedIn is similar to Facebook;

V. Implementation and Results

To make an iPhone application developers are limited to using a Mac OS

machine with xCode IDE and the language of Objective-C. An existing iPhone

application was created prior to our involvement in CONNECT. We reviewed the

functionality of this app, and ultimately decided to use it only for reference. The primary

reasoning behind this was that it was using the deprecated ThreeTwenty library. We

scrapped the ThreeTwenty library in favor of the built in Cocoa and Objective-C libraries

developed by Apple. Team The MACK also chose the JSON framework due to JSON

being a return format for our HTTP request. One of the difficulties we had with this

project was getting the HTTP requests to work properly. The issue that we were running

into was that the request wasn’t being formed properly. We came to a solution by simply

switching the formatting of the requests around until it worked. The other difficulty we

had was getting the iPhone tables to refresh properly. Unfortunately, Objective-C tables

do not work well with other components, such as constant refreshing of the data. This

issue was resolved by refactoring the code, and implementing a few additional methods

to allow for proper table reloading.

 The major requirements for our project to be considered a success were to have

an iPhone application that could

 make a connection request

 view current request from others

 confirm/ignore their request

 include “bump” functionality

 implement FAYT

 demonstrate how to integrate Facebook into the website with an add friend

request button

 We successfully completed each of these requirements.

The make, view, and confirm connections processes were tested by having a

user online to verify what happened while someone was using the iPhone simulator. We

had the simulator send a request and verify that it was picked up on the website under

the confirm connection page. To view connections we used the demo database to

submit a batch of requests and on the simulator we checked to make sure it was

capable of viewing them all. Then we would respond to the request by confirming or

denying them. Online, if the request was confirmed, they would now be visible in the

confirmed connections page. If the request was denied, they would not appear. Bump

was not strictly tested. Unfortunately, Apple requires a developer subscription to test on

a physical device. This subscription was not obtained. The project does compile and

work with no issue from the Bump API. FAYT was tested by typing the same search

constraints into both the simulator and the webpage to verify that both produced the

same result. For Facebook we created a demo HTML page with the coding to allow us

to friend request each other. See Figure 4 below for sample code.

 Figure 4: Facebook “add friend” HTML insert

VI. Scope and Project Progression

The original scope of work was to develop an iPhone application with “bump” and

FAYT functionality. It was also highly recommended to develop some proofs of concept

for Facebook or LinkedIn.

The scope was modified shortly after to having the confirming, viewing and

making a connection while having secondary, but less important goals like “bump” and

FAYT. The Facebook and LinkedIn requirements stayed the same. All of these goals

were met. The iOS application makes connections, confirms, views, does FAYT and

supports “bump”. Team The MACK also produced a report on how to implement

Facebook on the current CONNECT website.

VII. Future Directions and Conclusions

This project taught our team many things. We learned Objective-C, “bump”-ing,

FAYT, generating HTTP requests, parsing JSON responses and of course how to

troubleshoot all of this. While we did finish the primary and secondary goals of field

session, there are still many things that can be added.

We hope that this project will be expanded and improved. The ability to allow the

end user to switch conferences is probably the biggest one. The “confirm” and people

screens should both pull profile photos to help spur the memory of who is being

“confirmed”. Beyond that, if a user confirms somebody, they should be able to see all of

their information right on the phone. Offline support would also be a huge desire too. If a

user doesn’t have cell signal or a wireless connection, they should still be able to see

the people they have confirmed.

VIII. Figures

 Figure 5: Log in, create and make connection screens

 Figure 6: Confirm and view connection screens

Figure 7: Find-as-you-type screen

Figure 8: Help Screen

IX. Glossary

API - Application Programming Interface - set of specifications that allow software

programs to “communicate” with one another.

App - A shortened version of application, typically used for mobile development

Bump - An API developed for iOS and Android devices to allow “bump”-ing

“bump” - Transfers information between mobile devices when two users perform a fist

“bump” using the Bump API

CONNECT - Creating Open Networks aNd Expanding Connections with Technology.

The name of the project.

connection - A friend request of sorts. It consists of a request from one person to

another that needs to be confirmed so personal information may be shared.

CSM - Colorado School of Mines

Find-as-you-go - a technology used in the CONNECT project where every time the

query changes (even by a letter), it updates the search and limits or expands the name

list

FAYT - Find As You Type

GUI – graphical user interface, what the user sees.

HTTP - Hypertext Transfer Protocol - Networking protocol that serves as the foundation

of data communication on the World Wide Web.

IDE - Integrated Development Environment - Comprehensive application to aid software

developers with tools such as a compiler/interpreter, debugger, a source code editor

and a set of build automation tools.

iOS - Apple’s mobile operating system used on iPhones, iPod Touches and iPads.

JSON - JavaScript Object Notation - standard for human data interchange. It serves as

an alternative to the extensible markup language (XML).

OS X - Apple’s latest Operating System. Currently on the 10.6, the “Snow Leopard”

version.

SMS - short message service - text communication service most commonly used on

mobile phones.

UML - Unified Modeling Language - Modeling language used by object oriented

programmers to visualize the layout of a program.

xCode - IDE for Apple products including iOS, and Mac OS X.

X. References

Bump API http://bu.mp/api

Connect Website FAQ’s http://toilers.mines.edu/connect/help

Facebook API http://developers.facebook.com/docs/guides/web/#login

LinkedIn API http://developer.linkedin.com/docs/DOC-1207

Toilers Wiki Connect http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI

Toilers Wiki iOS http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient

Toilers Wiki Android http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient

http://bu.mp/api
http://bu.mp/api
http://bu.mp/api
http://bu.mp/api
http://bu.mp/api
http://bu.mp/api
http://bu.mp/api
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://toilers.mines.edu/connect/help
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developers.facebook.com/docs/guides/web/#login
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://developer.linkedin.com/docs/DOC-1207
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectProjectAPI
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectIosClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient
http://toilers.mines.edu/twiki/bin/view/Toilers/ConnectAndroidClient

