

ShipWare Field Session Group

Creating Shipping Comparison Software

Client: Kenneth Riskey, ShipWare
Team: Billy Duran, Kevin Raber, Peter Collins

Abstract

The problem that Ship Ware wanted solved was to have a downloadable program that compared

shipping costs between the three large shipping companies (FedEx, USPS, and UPS). Once the

user enters in details about their package, they should then be able to compare costs and transit

times and pick a method that best suits their needs. After the user fills in all required information

they should be able to print off the postage or prepaid label. The difficulty of this project was

twofold, one in creating a GUI that was straightforward for the user and two in the retrieval of

the shipping information from each of the three companies.

There were two options explored for this information retrieval, the first was to pull the necessary

information from each website as the user requests the data. The second was to hard code the rate

equations that each company uses into the program. These were the best choices after

researching how current programs work given the availability of data provided by the three

companies. The final design connects to each company’s API servers and sends a request for

shipping details. The servers then send responses to our program. Our program parses the

response and outputs data for the user to read.

Introduction

The number of online sales has increased significantly due to the spread of the internet and rise

in online companies. However, purchases online that are not digital require items to be shipped

from the merchant to the consumer. When the number of items being shipped is fairly large,

shipping costs become an important part of the associated business costs for companies.

Therefore, companies which can reduce their shipping costs will save large sums of money.

Our client represents the firm ShipWare and the goal of the client is to have a program that

retrieves the shipping costs from three main shipping companies, USPS, FedEx, and UPS, and to

then allow a user to choose the best option that suits his/her needs. The problem currently is that

there is not a program that can compare the shipping costs and transit times between the three

companies. The benefit to the client is an easy-to-use program that sorts through the shipping

data automatically.

Requirements

The requirements were very flexible, allowing different approaches to be tested. The only

requirements given were in regards to the program’s appearance and the major pieces that

needed to be included.

A. Functional Requirements

1. Retrieve data from three main shipping companies FedEx, USPS, and UPS

2. Take user input for return address, delivery address, size, weight, and type of

package

3. Give user options for type of shipping times

4. Show best price among the three companies

5. Able to print off postage and pre-paid labels

The client gave access to their Stamps.com account, which is a program that provides price

information and ability to prints off postage for USPS only. This program represented a model of

what the client desired the program’s appearance and functionally should be.

B. Non-Functional Requirements

1. Program should be downloadable

2. Program should be user friendly

The non-functional requirements were to ensure that the future users of the program could easily

understand how to navigate through the program quickly and easily.

High-level Design

As shown in figure 1, the user interfaces with the GUI (graphical user interface) and enters

required information such as shipping addresses, dimensions, weight, and type of package. The

program then retrieves information from the big three shipping companies’ shipping servers.

From there, the user chooses which shipping option he/she would like and appropriate sample

postage/pre-paid labels will be generated. The user then can print the sample postage/pre-paid

labels.

Figure 1: Architecture Diagram

Detail Design

A.

GUI

The GUI provides the interface between the user and the program. It requires the user’s inputs in

order to display correct shipping information to the user. The GUI requires the user to enter both

a delivery and return address, dimensions, weight, and the type of package it is. From there, the

information is processed into three different XML (Extensible Markup Language) formats

required by each of the big three and sent to their respective servers. Shipping information is

received from the servers in XML format and parsed by the program getting shipping cost,

method, and transit time. The shipping results are then displayed via the GUI. Once the user has

selected a shipping method, a sample preview is shown in the printing details window, where the

user can print it. The GUI also displays the total cost for sending the package for the chosen

method. The GUI was designed using NetBeans IDE, which is a GUI generator, while most of

the functionally was implemented using Eclipse, an open source Java IDE. The GUI uses Java

action listeners to allow control over what each part of the program will do and to allow us to

give large functional flexibility to the program. Our initial choice for IDE was Eclipse, but after

being turned onto NetBeans by our fellow students, we found out that the drag and drop

functionality for the GUI would allow us to create exactly what we wanted in much less time

than with Eclipse. When trying to figure out how to display the shipping information during

runtime, NetBeans became impossible to use due to the inability to edit the auto-generated GUI

code. To solve this, we copied our project back into Eclipse, edited what we needed to and

continued adding all functionality with Eclipse.

B.

Information Retrieval

The program needed to pull information from the big three websites. Initially, we believed that

there were only two available options for accomplishing this. The first of which was connecting

to each of the big three websites, entering the users input into text fields on the websites, clicking

the “calculate” button on the site, and then reading in the output from the webpages. The

alternative option was to get access from the big three to their equations for calculating rates and

hard coding these into our program. These two options, however, would not suffice for this

project. The first would require the program opening up a web browser, controlling the

computer’s mouse to click into text fields and to click the “calculate” buttons. This would be

time consuming, cause the user to lose control of the computer, and not very good programming

technique. The alternative would be more simple, but not maintainable. If any of the big three

changed any of their calculations, a patch would have to be created for the software, which could

become a tiresome task; depending on how often calculations were changed. In order to find out

which of these options would be best, or to see if there was another option, we contacted the

three companies hoping for some input and that is when they told us that each of them had APIs

(Application Programming Interface) already made. These APIs are made to interface with other

programs, exactly what we needed. The APIs allow us access to the online services of each of

the big three. After receiving the delivery information from our user, the program converts it into

XML using formats unique to each of the companies’ APIs and sends it to the respective server.

These servers will then process the data and send back information on the different shipping

options available for the inputted data. After our software receives this information, it will format

it in a uniform way and display it to the user.

C.

Price/Time Comparison

The purpose of the program is to compare the prices and transit times between the big three. So

once the information is retrieved, the program sorts through all available shipping options and

finds the best deal for the user. This means looking at transit times and shipping cost, doing a

comparison, and outputting to the user the list of shipping methods, sorted by the cheapest/fastest

method for their package. The user has the option of choosing between the fastest shipping

method and the cheapest shipping method. This requires separate algorithms to find the sorted

list based on which option the user chose. The algorithms for each had to generate a unique array

containing the new sorted order because the façade we used would not allow us to sort the data

without also deleting it.

D.

Printing

The postage and labels need to be printed off for the user after they decide on the best option for

them. The plan for payment will work by linking to their account with ShipWare through XML.

Then the user can either put a set amount on their account in amounts of 10$, 15$, etc. or pay as

they go. Once the user chooses a specific shipping option, an XML request is sent to the server

of that provider requesting the label. An XML response is received by our software and displays

the image of the label for the user to see. They then choose the paper type, defaulted to 8.5”x11”

letter and print the label. The program will need to interact with the printer which is doable in

Java as the Print command. The payment would require many more weeks of work as well as a

certification process through the company and was out of scope for this project. The printing also

required an entirely separate API specific to printing. However, we did include all the code

necessary to print an image; the only thing needed is implementing the postage/label creation

API.

E. UML

Figure 2: UML Diagram

Use Cases

D.1 Determine Shipping Options

Primary Flow:

1. Enter Return Address
2. Enter Delivery Address
3. Enter Package Weight
4. Enter Package Dimensions
5. Choose Package type
6. Choose Sort Option
7. Delivery info is Calculated
8. Delivery info is displayed in the Available Options box

Alternate Flow: Invalid zip Code/city/state

1. At 1 or 2 in "Determine Shipping Options" user uses an invalid zip Code/city/state

then display dialog box with a zip code/city/state error message

Alternate Flow: Missing Entries

1. At 1 or 2 in "Determine Shipping Options" user misses a necessary entry display

message to let user know.

1. At 3 and 4 if no values are entered display missing value message

Alternate Flow: Invalid Weight

3. At 3 in "Determine Shipping Options" user enters a weight less than or equal to 0 or

greater than the maximum shipping weight then display dialog box with a invalid

weight error

D.2 Print Postage

Primary Flow:

1. Determine Shipping Options
2. Select a Shipping Method
3. Choose Printing Paper Size
4. Click Print
5. Postage is printed

Alternate Flow: Missing Printer

1. At 4 if no printer is plugged into the computer

Implementation Details and Results

The project was initially coded using Eclipse and Java as the programming language. The reason

for this was that the program was to be fairly GUI intensive and Java seemed the best language

to work with the GUI in. However, it was slow going and would have taken a fair amount of

time to complete just the GUI. That was when there was a switch to NetBeans as the program

used. This is a drag and drop program using Java that makes creation of the GUI very easy and

fast. It allowed more time to work on the data retrieval and comparison functionality. Once the

GUI design was completed, we imported the code back over to Eclipse because Eclipse allowed

us to edit the auto-generated GUI code that was locked in NetBeans. The other reason for using

Java was that the three companies all use XML server requests in order for outside programs to

retrieve information and Java already has a strong XML support in the language. This made it

fairly easy to integrate the software of the companies with our own.

The big three companies already had APIs created that were exactly what was needed to get the

information for the program. Therefore, when it came to data requests we were able to view

sample code and modify it in order to both parse the information and get the correct data. There

were also a few interesting libraries used that helped the process. In the GUI aspect, we used

javax.swing.table because it allowed the shipping methods to be outputted in a clear format for

the user. We struggled trying to get this part of the GUI to work until we found this library. Two

other major libraries were the DocumentBuilder library and the NodeList library. The

DocumentBuilder is what allowed us to parse the responses we received from the companies.

NodeList also helped with this by allowing us to break down the document that was created

according to what pieces of information were being looked for. Without these libraries the

amount of time to complete the requirements would have to great within this time span.

The biggest problem we ran into came from working with the companies’ code. There were

many times when the requests being sent were incorrect by very minor details, therefore, the

server couldn't respond and the error was very hard to debug. This happened for each company

and the way we were able to solve it was by contacting the technical support group of each

company. Another major issue was trying to integrate their code with ours. There were a lot of

factors that caused problems; the main one being that FedEx's code is mostly stand alone. This

means that we had to fix the build path and refactor the code which was very large in order to

integrate it into our program.

Results

The project asked for us to retrieve information from a server and then parse it. The following

shows both requests and replies to each company. There were two tests to verify the accuracy.

The first was that the companies gave sample inputs and outputs to use to see if our program

would produce an output that matched the output provided. Then, once we switched from the test

data to actual data, we went online to each company’s website and compared the results. Figure 3

shows the final GUI with sample output.

Figure 3: Final GUI with sample output

USPS

The following is the request format that USPS requires for their server to respond with the

correct data. The first line is the code that allows access to their production server. The following

lines given are always the ZIP codes and weight of the package. This information is pulled from

the user given inputs.

Request:

<RateV3Request%20USERID="**********">
 <Package%20ID="1ST">
 <Service>ALL</Service>
 <ZipOrigination>81144</ZipOrigination>
 <ZipDestination>80401</ZipDestination>
 <Pounds>40</Pounds>
 <Ounces>3.0</Ounces>
 <Size>REGULAR</Size>
 <Machinable>true</Machinable>
 </Package>
</RateV3Request>

Response:

This is how the server responds to the request. The data is then parsed using the tags MailService

and Rate and that information is displayed to the user.

<Postage CLASSID="23">
<MailService>Express Mail Sunday/Holiday Guarantee</MailService>
<Rate>158.40</Rate>

</Postage>
<Postage CLASSID="25">
 <MailService>Express Mail Flat-Rate Envelope Sunday/HolidayGuarantee</MailService>

<Rate>30.80</Rate>
</Postage>
<Postage CLASSID="2">

<MailService>Express Mail Hold For Pickup</MailService>
<Rate>145.90</Rate>

</Postage>

UPS

Request:

UPS requires more data to be sent than USPS does. It needs the return address and the delivery
address. Using that information it generates the associated costs and shipping methods.

<?xmlversion="1.0"?>
<AccessRequestxml:lang="enUS">

<AccessLicenseNumber>**************</AccessLicenseNumber>
<UserId>ShipWare.com</UserId>
<Password>********</Password>

</AccessRequest>
<?xml version="1.0"?>
<RatingServiceSelectionRequestxml:lang="enUS">

<Request>
<RequestAction>Rate</RequestAction>

</Request>
<PickupType>

<Code>01</Code>
</PickupType>
<Shipment>

<Shipper>
<Address>

<AddressLine1>765.5 Madison st.</AddressLine1>
<AddressLine2></AddressLine2>
<City>MonteVista</City>
<StateProvinceCode>CO</StateProvinceCode>
<PostalCode>81144</PostalCode>
<CountryCode>US</CountryCode>

</Address>
</Shipper>

Response:

The response is very large and contains a large quantity of data that is unneeded for our
purposes. The following is the data that is output to the user and is parsed from the response
using the tags CurrencyCode and MonetaryValue.

<TotalCharges>

<CurrencyCode>USD</CurrencyCode>
<MonetaryValue>30.47</MonetaryValue>

</TotalCharges>
<GuaranteedDaysToDelivery>1</GuaranteedDaysToDelivery>

FedEx

Request:

The request contains all the same detail that UPS needed. The following is the partial request
string that is sent to the FedEx servers.

<v8:RequestedShipment>
 <v8:ShipTimestamp>2010-06-20T11:32:55.958-04:00</v8:ShipTimestamp>
 <v8:DropoffType>REGULAR_PICKUP</v8:DropoffType>
 <v8:ServiceType>GROUND_HOME_DELIVERY</v8:ServiceType>
 <v8:PackagingType>YOUR_PACKAGING</v8:PackagingType>
 <v8:TotalWeight>
 <v8:Units>LB</v8:Units>
 <v8:Value>20.0</v8:Value>
 </v8:TotalWeight>
 <v8:Shipper>
 <v8:AccountNumber>#########</v8:AccountNumber>
 <v8:Address>
 <v8:StreetLines>1059 Valley View</v8:StreetLines>
 <v8:City>Hurst</v8:City>
 <v8:StateOrProvinceCode>TX</v8:StateOrProvinceCode>
 <v8:PostalCode>76053</v8:PostalCode>
 <v8:CountryCode>US</v8:CountryCode>
 <v8:Residential>true</v8:Residential>
 </v8:Address>
 </v8:Shipper>

Response:

The responses vary depending on what flags you send. Flags meaning type of shipping options
you want. In this case we asked for all return flags to be sent. The sample response was fairly
easy to retrieve since it was all in the following format. The tag for FedEx to parse is Amount.

<v8:TotalNetCharge>
 <v8:Currency>USD</v8:Currency>
 <v8:Amount>13.19</v8:Amount>
</v8:TotalNetCharge>

Glossary

GUI – Graphical user interface

API – Application programming interface

XML – Extensible mark-up language, set of rules for encoding documents in machine readable
form

Tag – The keyword in the XML response that matches the searched for word

