
   

   

   

   

   

   
   
   
   
   

Consistent User Environment  

Field Session 2010  
Los Alamos National Laboratory  

   
Garrett Motzner  
Jared Duncan  
Joe Martinez  

   
   
   
   
   

Abstract:  
Los Alamos National Laboratory (LANL) has a Module Display Application which tracks 
the state of installed software packages across their High Performance Computing 
(HPC) clusters.  We need to increase the efficiency and effectiveness of this application 
by automating data gathering, adding data interfaces, adding notification capabilities 
and better reporting methods.  
   
The current software does the needed identification of inconsistencies, however it takes 
more work than is necessary to run this software and keep the data up to date, and 
there is no automatic notifications of inconsistencies.  We will essentially be making 
their current software more user-friendly and effective.  We will need to replicate the 
software environment at least partially on a virtual machine (VM) at Mines in order to 
develop and implement these new features.  We will also need to work with our contacts 
at LANL to make sure our software implementation also works on the HPC clusters on-
site at LANL.   
 
   



Introduction  

Los Alamos National Laboratory currently has software that monitors the versions of 
software packages installed on their HPC clusters.  This monitoring software consists of 
two main parts, data retrieval and data display.  The data retrieval is achieved through 
various shell scripts that require frequent user interaction.  The data display is a series 
of web pages that allow users to select data they wish to view.  Our project is to make 
this software generally more user-friendly and efficient by automating data collection 
and adding more functionality to the web interface so the client can manage the cluster 
data better.  

We need to write a shell script which will automate data collection on an HPC cluster.  
This script will run a second script on each back-end node of that cluster.  Once all the 
data is collected the script will then call a third script which will tar all the data together 
for easier transport.  The user only has to interact with our script, and does not need to 
even know about the other two scripts.  

The web page needs administrative functions added.  These functions will allow 
administrators easier access to database data for modification.  Currently the only way 
to modify the database information is by manually interacting with the database tables.  
We are essentially creating an interface between the user and these tables.  Because 
we are adding these administrative capabilities, we also need to implement some form 
of security, a roles and permissions listing, which will prevent certain users from gaining 
access to the administrative capabilities.  

A notifications system is desired by the client to send out email notifications of software 
inconsistencies.  The data that is gathered from the HPC clusters is loaded into a 
database, then when the user wants to view that data an algorithm checks for 
inconsistencies from the data.  We need to find a way to automatically call this algorithm 
that checks for inconsistencies and augment it so that it can send out notifications.  

Currently, the software has graphical history view capabilities; however this functionality 
contains display errors which prevent the history view from being displayed in some 
cases.  It is also hard to use and understand.  We need to fix the display errors and add 
labels or comments to make this functionality easier to understand.  

Requirements:  
Functional:  
Our project is to increase the functionality and effectiveness of software that already 
exists and is used at Los Alamos.  A previous field session team worked on setting up a 
basic interface and gathering data so that comparisons could be made between 
different clusters and nodes and compares the software installed on each.  Two shell 
scripts are used to gather the data from the clusters, one to actually gather the data 
from the nodes of a cluster and one that tar's up all this data so the user can transport it 
easier.  This data collection process requires frequent user interaction.  The user has to 
log into each individual node of a cluster and run the shell script to gather data.  To 



make this process more efficient we are to add automation to the data collection so that 
there is less user interaction.  The user should only have to log into one front-end node 
of a cluster and our script will collect data from all the other nodes.  After the data is 
collected we also need to write a script for server-side data gathering, where the web 
server can go out and gather all the data collected by the previous scripts and correlate 
all the new data into a database.  

Another job is to implement a history function into the program to graphically display 
current and previous software versions installed on clusters.  The current software has 
some history graphing functionality already there, however it has errors in it that prevent 
the history from displaying in some cases.  This implementation is also difficult to 
understand.  We need to either come up with some other mechanism to view the 
history, or repair the current mechanism and make it easier to understand.  We decided 
to just stick with the current history implementation and try to fix the errors and make it 
easier to understand by adding comments and a better description of what is being 
displayed.  
Notification emails are desired by our client.  These should be sent out when the cluster 
data has been loaded into the database and the server checks for inconsistencies in 
software in that new data.  These notifications should be customizable, so a user can 
tell the system when he/she wants to be notified or to discontinue notifications of a 
particular problem.  
Our final and largest task is to add role and permission controls to the program.  At this 
point in time, anyone using the system, whether they are an administrator or just a 
general user, can do all of the same tasks with the software.  Currently this is not a 
problem because there are no administrator portions to the program.  However we are 
adding data interfaces into this software which should only be accessible to 
administrators.  We have no set rules on how to implement this portion of the project 
provided by our client.  We need to make it versatile enough to be able to be easily 
changed later on, both because of the security requirements our client will need to add 
into this software and because administrators will need to make necessary changes 
whenever needed.  

Along with these large tasks, there are many different smaller jobs that could be 
implemented as well.  An example of this would be adding a date calendar drop down 
for the user instead of making users manually input a date for which to view software 
installed on clusters for that date.  

Non-functional:  
We have to set up a basic environment for this project as well as set up our system in a 
way that would be used in the same circumstances as if it were part of the system in 
LANL. That means setting up a system that has information on different clusters and 
nodes, provided by our client, so that we would be able to use actual data to develop 
with and not just test data. This all had to be done before we could start even basic 
programming. We first have to learn the existing software before we know how we can 
change it to be more usable. Another task we have to do is fill out the information and 
take the tutorials in order to get our crypto-cards, which are used to generate passwords 



for LANL computer systems. We need to fill out paperwork and then give them time to 
get us access to their system which held us back from completing any of this early on in 
the project. 
 
Design  
The general flow of our program should follow along the general line of:  A user will log 
onto a front end node of an HPC cluster.  They will then run the automation script we 
have developed; this will gather all the data for that cluster in one place.  The user will 
then have to load this data into a database.  After that is done users can then log into 
the website and view the new data as well as the old data still in the database.  Below is 
a diagram depicting the basic flow of our system.  

Program Flow Diagram  

  



The largest part of our project is the roles and permissions portion of the project.  We 
implemented this with a CakePHP component called the ACL component.  ACL stands 
for Access Control List.  This list contains objects called Access Control Objects 
(ACO's) and Access Request Objects (ARO's).  These objects interact with each other 
to determine if a user has access to view a certain page or resource.  
ACO's in our case will be the pages of the website.  ARO's will be the users in the 
system; each user will belong to a certain role.  If a user wants to look at a page, the 
ACL will check to see if the user has access to view that page.  This roles and 
permissions portion of the project is required because of the additional functionality we 
are adding to the system, which includes access to data only administrators should be 
able to access.  
Users in this new system will be broken up into four roles per client wishes.  A General 
User role will have access basically only to what can be viewed with the current system, 
which is the user environment on the HPC clusters.  This includes a table of all the 
software installed in and across clusters, with inconsistencies marked, and history views 
for software that is and has been installed on a certain cluster.  
A Node Manager role should be able to have access to data concerning HPC clusters.  
They will be able to modify nodes in a cluster and also modify clusters themselves. 
 They have the ability to add or remove nodes from a cluster, add or remove clusters, 
and to modify any data for a cluster or node.  
A Software Manager role should be able to have access to data concerning software 
modules installed on HPC clusters.  These users will be able to modify the software 
displayed by the system, most notably they will be able to define more categories of 
software for users to view.  
Finally a Deity role should be able to have ultimate access to the system.  They will 
have all the powers of General Users, Node Managers, Software Managers and then 
more.  They should be able to modify users and roles and also define permissions for 
users and roles.  
The history feature in the current software does not work correctly and is complicated to 
understand.  We just corrected the errors in the current history display feature and 
added notes to make it easier to understand.  Below is a portion of a sample output from 
this history display application.  Blue lines represent the times that a particular version of 
software was installed on the system, while red lines mark the times when those 
versions of software were the default versions for that cluster.  The history view has two 
layers, one that has a resolution of years and one that has a resolution of months.  
What you see below is a portion of the part of the graph with a resolution of months.  
These two different parts are mainly what confused users, so we added comments to 
the webpage trying to explain the different pieces of the graph better.  

Example History View  



  

Another important part of our project is the automation of data collection on clusters. 
 We implemented this through a shell script that automated the execution of other 
already existing scripts on nodes of a cluster. One of these existing scripts gathers and 
formats the data while the other one puts it all together and tar's it up for the user to use 
when needed.  Our script has to submit jobs to all the nodes in a cluster, run the script 
that gathers data on those clusters, and keep track of the progress of each of those 
submitted jobs.  Then our script calls the last script that tar's up all the data that was 
collected. Clusters at LANL can be extremely busy at times, so there may be times 
when our script will not be able to run on back end nodes.  To handle this problem we 
created a “timeout” feature in out shell script.  The user can either specify a desired 
timeout or use the default five minute timeout.  If the job for a back-end node does not 
finish before the timeout, it will be killed and any data gathered from other nodes will be 
bundled up like normal.  The user is displayed a message that some of the jobs were 
not able to complete.  

Our software interacts with many different databases.  Most of these have to do with the 
roles and permissions portion of our project; they are databases that hold information 
concerning users, roles, and the various permissions.  We also have databases to hold 
information gathered from all the HPC clusters.  More information is provided in the 
Programmer's Guide concerning the databases and their layouts.  

Design Language Decisions: 
For this project, there was only one point where we had a choice on which language to 
choose. When automating the data gathering, we needed to write a shell script to 
complete this task. The already existing code was written in tcsh, however since we did 
not need to work with this, the only thing we needed to do was call it, we decided it 
would make much more sense to program in a language that we already knew.  



This was the only choice in language that we really had throughout the project and it 
was a simple choice as it would have no affect on how the project ran whatsoever. 
Therefore we chose to program in bash because two of our three members had already 
had experience shell scripting in bash on a similar project making at least this part of the 
project much simpler.  The website portion of this project already existed, so we could 
not choose a different language to design this in.  We had to use PHP and the 
CakePHP framework.  We also had to use the already existing mySQL database 
schemas.  
For much of our project we used built-in CakePHP functionality.  CakePHP has a lot of 
already existing tools to accomplish tasks we needed to do.  We especially used cake 
auto-generated code to quickly complete items that we knew would have to be redone 
once the software was released to the client anyway.  Los Alamos will need to rework 
the authentication portions of our code to comply with their own security standards, so 
we did not spend much time creating authorization code.  

Design Code Choice Decisions: 
For our project, we had to work directly with code already written and improve upon this. 
By that I mean that we had to add our own code as well as edit already existing code. 
For the majority of the project, we used CakePHP's code generation (cake bake) to 
implement the additions and features that the client wanted in the project. We did this 
because CakePHP would give us everything that we needed for the section. It also 
gave us a basic layout and consistent setup for the code that we were able to use 
throughout most of the project. We started off originally designing our own html layouts 
and implementing our code within that layout, but then we decided to auto-generate 
much of the code making it much more user friendly, consistent, and time effective.  
Problems:  
One of the issues we had to resolve was the basic setup of the project. We started off 
not having any access to the programs we needed to setup the project, or an 
environment in which to work. This includes server access at the school and at LANL. 
Because of this, we were set behind from the start on this large project; it took about a 
week to setup what we needed at the school.  
Once this was set up we could work on the GUI while waiting for the other information 
we needed from LANL as well as our crypto-cards to get into their system. It took 
another 2 weeks for us to get the needed access to LANL's computing clusters to 
complete the automation portion of the project; however this portion of the project 
turned out to be much easier than we had first planned for.  
Another snag we ran into was trying to send emails from our virtual machine.  We 
needed to send emails for the notifications portion of this project, but since the email 
server couldn't be set up properly at school, we had no way of testing this functionality.  
As a result we postponed the notification portion of the project, which we did not have 
time to complete. 
 
One of the biggest problems we encountered was time management.  We did not plan 
this project out as well as we should have from the beginning.  While we were waiting 
for the environment to be set up we could have been doing more design of portions of 



our project, or doing more research on the automatically generated code that CakePHP 
could provide.  When we were about halfway through the project we actually started to 
plan out portions of the project more.  Looking back on the project now we realize how 
much time we could have saved if we would have planned out our work better.  
The environment took us a lot longer to set up than we had first planned on.  Even after 
the environment was up and running and we could start work on it, only one member of 
our group had access to the virtual machine on which our web server was running.  It 
was not until halfway through the fifth week of the project that the rest of our group 
obtained access to this virtual machine.  This slowed us down because a lot of the work 
we did all had to go through one member of our group. 
 
Results: 
Our data gathering script had to interface with two already existing scripts.  This 
interface was pretty trivial however, all our script had to do was call these two other 
scripts.  To check and demonstrate that our script performed correctly all we had to do 
was run our script and then manually gather data like our client would normally do and 
compare the results.  
   
The website portion of the software had to be able to interface with the data that the 
shell scripts gather.  However this interaction was already implemented in the original so 
we just had to make sure we did not break anything while adding on our additional 
functionality.  

Project Constraints:  
We were bound to the already existing versions of php and CakePHP, as well as the 
Apache web server they use on their system.  

When working with CSS to make our web page look as good as possible, there are lots 
of different features that are available. The only problem with this is that there are also 
many different web browsers, some of which may not support the version of CSS we 
were using. Thus when making our GUI and adding different CSS features, we had to 
be careful that this would not affect the web page or crash it if it were used on a different 
web browser than the one we were using. This was not too much of a problem as we 
were given the specifics from the client that most personnel at LANL use either Firefox 
or Internet Explorer or any other of the top browsers, all of which should be up to date in 
this aspect at all times.  

 
Scope and Project Progression: 
When given our project, we were given three large projects to be completed. These 
three projects were the roles and permissions, the automation, and the notifications. 
Along with that we were given smaller projects/tasks to be completed when we had the 
opportunity. This left us with a very open ended and dense project as we saw it. The 
order of completion/importance was that the roles and permissions were most 
important. The automation was next and then the notifications last.  



When running preliminary testing, we found out that we would not be able to test our 
email notifications due to not being able to send emails from our server. Thus we put 
the majority of our time into the roles and permissions, which was not a problem since it 
was our highest priority task. We set our goals according to this and thus we had 
planned to finish the GUI and roles and permissions about a week before the project 
was due and then finish the automation and notifications during that last week.  
Because of the timing of this project, the automation and notifications became much 
smaller roles than were originally hoped for. This meant that the automation was still 
going to be completed the same way on the cluster side, but we did not have time to 
also automate collecting that data to the web server.  Instead of implementing an entire 
new notification system, we planned on using the inconsistency system already 
implemented and just adding the capability to send emails to this. All of these decisions 
were discussed with the client and agreed upon. 
 
Conclusion: 
Our project was in essence a few different projects all bundled into one. Each of these 
had it's own goal as well as constraints and instructions.  The automation of data 
collection from the HPC clusters was accomplished.  We were able to add a roles and 
permissions system into the web pages, along with many administrative functions to 
access and control databases.  We fixed all the errors we found in the history display 
functionality and added comments to hopefully make this easier to understand.  We 
were not able to get to the notifications or the server-side automation of data gathering 
portions of this project due to time constraints.  
Concerning the automation of data collection, the only thing that could have gone better 
is when the MOAB resource manager’s command "msub" is called, which runs a 
command on a machine, it creates an output file in the directory of the script called 
“slurm-<processId>”. At the end of the script, if every process completed, these output 
files are removed. However if every process didn't complete, we could not remove these 
files because there are many points where no server time would be given, thus trying to 
remove a file that did not exist would throw and error that would break the automation.  
All of these files will eventually get cleaned out during a successful run of the script 
though, so this was not classified as a large problem.  
Since this was our first real-world project for many members of our team, we learned 
quite a few lessons on what we should and should not have done. After the first week of 
this project, we knew exactly what we needed to do. Not completely how we were going 
to do it, but we had all of our tasks and goals in front of us. One of the things we should 
have done right away was plan how we were going to do the project; determine which 
parts we were going to work on and which parts we were going to wait on at any 
particular time.  
Another lesson we learned was again about planning: we needed to plan out our GUI to 
make sure that we built everything around a theme; so that it would be consistent. This 
project had a lot of wasted time working on parts of the GUI that we eventually changed 
or eliminated. We ended up wasting time because of this; we had to go back and 
change pages to the style we eventually settled on.  Some pages went through multiple 
revisions before ending up with the finishing style.  In a longer project these multiple 



revisions could have been classified under a design phase of the project, but for this 
project it felt like wasted time.  
One of the biggest lessons we learned was that you should learn any special features in 
the program that you will be using to implement your code.  We spent some time 
building pages for a certain part of the project, and then looked at the CakePHP auto 
code generation capabilities to find that they provide code to do almost exactly what we 
needed.  If we had researched this before writing any code then we could have saved a 
lot of valuable time, but the initial manual coding was good to get a better sense of what 
kind of a page we needed to build.  
Learning from all of these lessons, we realized that when working with a large project 
like this, planning must be used to minimize wasted time. We were given a large project 
and ended up wasting time working on parts of the project that should have been trivial. 
Planning could have saved us all of this time, which could have been used to implement 
a notifications system.  
Future Directions: 
Our client will need to go back through our code and rework parts of it to meet any of 
their standards, such as security standards.  Most importantly, Los Alamos will need to 
rework much of how we implemented the authorizations of our web pages to meet their 
security specifications.  
We did not have time to address the notifications portion of this project.  Instead of 
actually implementing this portion, we were only able to describe what we were planning 
on doing for the notifications.  We put comments in the code and added sections to the 
Programmer’s Guide describing what we were planning on doing.  
We also did not have the time or access to the LANL server to address server-side 
gathering of all the data collected on the clusters.  We also addressed this in our 
Programmer’s Guide, describing how we had planned to implement this portion of the 
project as well. 
 
Glossary:  

• LANL/Los Alamos- Los Alamos National Laboratory  
• HPC- High Performance Computing  
• Node- Single computing element  
• Cluster- Multiple nodes working together with shared resources.  
• (User) Environment- The installed software versions and packages on a cluster 

or node  
• ACL- Access Control List  
• ARO- Access Request Object  
• ACO- Access Control Object  
• PHP- A web scripting language  
• CSS- Cascading Style Sheet  
• Web App- An interactive web page  
• Cake/CakePHP- A framework for php with functions common web app tasks  



 
References:  

• lanl.gov - The sites we obtained info from having restricted access  
• http://book.cakephp.org/  
• http://www.w3schools.com/php/php_intro.asp  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Database Interactions Diagram for the Clusters and Their Installed Software  

  


