
CiviCore Final Report
Cody Gonzales, Gary Scheid

Abstract

The visual representation of data in both a meaningful and aesthetically pleasing manner
can go a long way in the modern business world. We have created a solution to take
simple data and turn it into appealing reports. Our solution takes plainly formatted XML
input and transforms it to a well formatted and styled HTML report based on the user’s
needs. The application gives users options to customize their reports from an intuitive,
non-technical interface. It also allows for the insertion of summary data, company logos,
headers and footer, and allows for the customization of the report’s style.

I. Introduction

Our client for the field session project was CiviCore. CiviCore is a Denver-based
company founded in 2000 that provides non-profit clients with information solutions and
consulting. CiviCore had been providing their clients with reports on a per request basis.
These reports vary greatly from client to client, but are intended to help Civicore’s clients
get meaningful information about their companies. Civicore needed to involve
developers each time one of their clients needed a new report. This was not cost efficient
and CiviCore wanted to enable their clients to build reports themselves in an intuitive,
non-technical environment. Providing CiviCore and their clients with the ability to create
reports for themselves would both reduce CiviCore’s costs and potentially increase their
customers’ satisfaction.

Due to the complexity of the project, CiviCore had originally requested that we research
and implement existing business intelligence (BI) solutions, rather than create one from
scratch. However, after reviewing the possible solutions, CiviCore decided instead to
have us design a web-based report designer to be integrated with their current software
used for creating reports. A summary of our BI solution research can be found in
Appendix A.

The following document details the design requirements and details for the reporting
solution that we developed for CiviCore.

II. Requirements

Our client has given us several functional and non-functional requirements that the report
designer we implement must meet.

A. Functional Requirements

• Sort report data
• Group report data

• Sum or count items within report groups
• Customize the report appearance through:

o Customizable report colors and fonts
o User specified image or text

• Allow users to create and use configuration files to skip the report designer and
immediately generate a report.

B. Non-Functional Requirements
• Run on a Java or PHP Linux server.
• The report designer should be a web-based application.
• Method of report output must be HTML

C. Scope

All of the above requirements were to be met in our final solution. If we had extra
time, the client would have liked additional output formats to be supported,
specifically PDF.

D. Risks

1. Technology Risks
• The only foreseeable technological risk in the scope of this project was the

interfacing of our application with the client’s software. Based on our design,
the input from the client’s software must be very specifically formatted to
perform correctly.

2. Skills Risks

• Team members needed to learn how to work in a server environment and with
tomcat.

• Ultimately the team needed to learn PHP as well.

III. System Design

CiviCore currently uses a query builder to interface with their database and retrieve data
to be included in a report. Data from the query is stored in an XML file, formatted as
shown in Figure 1. Our software must take this data and provide an interface for a user to
create a report from it. Our software must then take the data, parse it, and format it into a
report. The formatting will be based on the input by the user to our report designer.

Figure 1: XML input

The overall work flow of our system can be summarized in three components: data
parsing, report preference collection and report generation. As shown in Figure 2, the
user first uses the query builder to write the desired fields from the database into XML.
Our application then parses the XML and provides a series of screens asking the user for
specific details regarding the report's format. The report generators then uses the data
from the XML file to create the report in the specified format and display it as an HTML
page.

Figure 2: Architecture

A. Data Parsing
The data parsing component accepts the XML input from the query builder and parses it
for use in both the report designer and report generator modules. In particular the parser
reads the first row of XML input and uses this data for column headings; the columns
headings are stored in as part of the user's PHP session data. In addition to retrieving the
column headings, the parser strips the input of its XML tags and stores the raw data as a
multidimensional array in the PHP session array which is eventually passed to the report
generator. The XML parsing is accomplished through the use of PHP’s SimpleXML
library. In the data collection and report generation components, the number of columns
is used to determine column names and formatting.

B. Report Specification
The component consists of five separate PHP-backed HTML pages:

1. The first form gives the user two options; create a new report, or use a saved
configuration file to generate a report based on previous report specification. If
the user chooses to use a configuration file, all of the report’s styles will be as
they were in the configuration file; however the data the styles are applied to will
come from the new XML input. This will result in a final report page showing
after the ‘use this configuration file’ button is selected. If the user chooses to
create a new report, the second form will appear.

Figure 3: Welcome page

2. The second form requests four pieces of data from the user, none of which are
mandatory to proceed (see Figure 4). The options here allow the user to
customize the look of the report to be generated. This page contains the data
parsing component which is responsible for collecting and storing an XML input
passed to the application via the client application.

Figure 4: Report style page

The form first requests the user to select a template to style their report with.
These templates are responsible for creating difference in the final report's color,

font type, component positioning and other visual aspects. We only created two
templates to test with, as the template design is not in the scope of the project.
The CSS formatting of the template will be referenced by the report generation
script during the report creation component of the application. When selecting a
template, the user is shown a preview picture to give the user an idea of the style
of the template.

The form also asks the user for both header and footer text, which is added to the
top and bottom of the final report. The last piece of information which the form
asks for is an image to be uploaded. This image is uploaded via an HTML browse
button, allowing the selection of an image file from user's machine. Once the user
finishes entering their desired customizations, they can select the 'next' button. At
this point all of the entered data will be stored in the PHP session array. This
includes the image, which is stored temporarily stored as binary data.

3. The third form asks the user which fields from the input XML they would like
to group by.

The form contains two lists of field headers and arrows controlling the movement
of fields between boxes. The left most box will be populated with the column
heading or the top most element of every column. In order to group by any of the
fields the user must highlight one or more of the fields on the left and press the
right arrow. Each of the highlighted items is copied into the right list and deleted
from the left. Similarly, items on the right can be selected and moved to the left
with the left array. We created this dynamic manipulation using Javascript. The
grouping is prioritized in top to bottom order from the fields in the right list. Once
the user presses the 'next' button the data in the right list is stored in the PHP
session array along with the data from the previous form. Figure 5 shows the page
for choosing which fields to group by.

Figure 5: Group by page

4. The fourth form is responsible for collecting summary statistic preferences
from the user.

The form contains a populated list of every field header from the XML input;
each followed by a drop down box containing possible summary options. The
default option selected for each of the fields is 'None'. The user has the option of
selecting either 'Sum' or 'Count'. The sum option simply sums the column based
upon each of the group by selections and the count counts the total number of the
items in each of the group by selections. There is no error handling for
summations of non-numeric columns at this point in the process, however in the
report generation component non-numeric columns summed will result in an
'error' message where the summation would be.

Once the user presses the 'finish' button, all of the data from the form will be
stored in the PHP session array along with the data from the previous forms. If
the user chooses to save the configuration file by selecting the check box, the next
page will be form five, otherwise the user will be automatically redirected past
form five and to their report. Figure 6 shows the page for selecting which
summary data to add in the report.

Figure 6: Summary page

5. The fifth form is very simple, but much of the behind the scenes work of the
report generator happens on this page. The user data is used to instantiate a report
generator. This generator then produces XML to recreate its configuration and
writes it as a file on the server. In addition, if the user uploaded an image it is
written to the server as well. The user has the option of right clicking the link to
the configuration file and saving it. This can be used later to generate a report by
all of this sessions choices. After the user selects the ‘next’ button, they will be
redirected to their report.

Figure 7: Save configuration page

C. Report generator
The report generation component will manipulate the parsed XML input data based upon
the user's specifications and create a formatted HTML page of the results for the user to
view. The report generation is divided into three smaller subroutines. The best way to
think of the data for the purposes of the following sections is as a simple block of rows
and columns.

1. Sort
The first subroutine is responsible for grouping the data according to the user
specifications. In order to accomplish multiple levels of grouping the subroutine
will use a stable sorting algorithm. A stable sorting algorithm is one which
maintains the relative order of data with the same value. The subroutine will
stable sort the rows of the report by the columns selected for grouping in reverse
order to get the desired grouping affect. Once the first subroutine has finished, the
data will be ordered according to the grouping specifications.

2. Summarize
The second subroutine is responsible for applying summary information to the
data. Two options are available: summation and count. In both cases, data will be
calculated on a single column, the summary column, based on another column,
the basis column. These columns can be the same. The basic implementation
behind this subroutine is to sum or count the summary column so long as the basis
column remains the same.

For example, a user might have a report containing cities listed by county and
want to count the cities in a country. The routine then loops through the data and
counts the cities so long as the country remains the same. Once the country
changes, a row containing the count would then be inserted and the process starts
over for the next country.

3. Output
The last subroutine is responsible for writing the HTML output. This subroutine
takes the sorted and summarized data and put it into HTML tables, applying styles
given by the selected template and adding the header, footer and image if
provided by the user. The styling takes the form of CSS files which are
dynamically included and correspond to the template selected by the user. The
template data will take the form of CSS style sheets and custom HTML code into
which the table of summarized data will be input.

At this point, the HTML page has been generated and the user is able to view it.

D. Example Scenarios

Generate a report detailing the total number of donations in each city. Figure 8
shows what this use case might produce.

1. Generate XML via CiviCore's SQL builder.
2. Choose a style template for the report
3. Add header and footer text
4. Add an image to be included in the report heading (e.g., a logo).
5. Select next button.
6. Highlight the column name corresponding to city and press right arrow button.
7. Select next button.
8. Choose the count options, choose donation as the ‘on’ field, choose the city as
the ‘based on’ field.
9. Select finish button.

Figure 8: Sample Report

Use a saved configuration file to generate a report.
1. Generate XML via CiviCore's SQL builder.
2. Upload desired configuration file.
3. Select use this file button.
Figure 9 shows what the result would be from this use case if the saved
configuration file performed a group by on dollars donated along with a sum on
dollars donated.

Figure 9: Sample Report

IV. Implementation Details and Results

A. Implementation Details

1. Rather than implementing XML reading from scratch, SimpleXML was used to
do the base parsing and writing for both the report data and for the configuration
file. Since our use of XML was limited and simple, it made sense to use a library
rather than to write our own code to handle XML.

2. We used PHP because it was recommended by CiviCore who are in the process of
moving much of their infrastructure to PHP. Additionally, it was much easier to
learn and use rather than having to learn how to use tomcat for java.

3. User files are not immediately placed on the server, but are instead stored
temporarily as binary. This allows for consistent handling of images from both the
configuration file and from user upload.

4. User files created for the report are stored in temporary folders on the server.
Unfortunately, they are needed until the last page of our current implementation,
so they can not be deleted automatically without interfering with the report
display. To facilitate the deletion of these files, a simple bash script is included.

B. Results

1. Our product met all of the functional and nonfunctional requirements given to us
by CiviCore. However, we did not implement any additional output formats.

2. The following unit and acceptance tests were used to ensure that we met all
functional requirements:

a. XML parser - Unit Tests
• Verified that the XML is correctly parsed into a two-dimensional array

of values.

b. HTML data collection - Acceptance Tests
• Can the user navigate the site?

o Do all forms, buttons and drop-downs perform as expected?
• Verified that user data is stored correctly when moving back and

forward through pages.

c. Report generator - Unit Tests
• Is the data sorted in the correct order based on the groupings?
• Do the sums and counts come to the correct totals?

d. Report generator - Acceptance Tests

• Verified that the correct subset of data used in the summary statistics.
• Properly formatted HTML page is generated no matter the inputs.

e. Integration Testing

• All three parts of the system must work correctly together. In
particular we:

o Verified that forms correctly populate with XML data.
o Verified user information and XML data was correctly passed

to the report generator.

V. Conclusion

A. Future Work
Due to time constraints and the scope of creating a fully featured reporting tool not every
possible feature has been implemented. Work to extend the application could likely be
focused on one of the following areas:

1. Extending Summary Options
Currently summary options are limited to sum and count. Add the ability to sum
or count only unique items, or adding the ability to sum or count only if a field
meets some condition.

2. Extending Grouping Options

 Currently groups are sorted in ascending order. Add the options of sorting in
 descending order.

3. Output formats
Currently the final report is displayed as an HTML page. Add the option of

 exporting the report to a PDF format.

4. Extending and Creating Templates
There are two templates provided with the application. Create additional

 templates and extending the style options beyond their current state.

B. Lessons Learned
Through the work on this application we have learned several valuable lessons, both
regarding technical aspects and project management.

1. simpleXML: PHP has a supported set of functions for the manipulation of
XML formatted data. simpleXML was very useful for changing the input data
into arrays, as well as for storing or data for the configuration functionality.

2. Storing binary data in a file: Base64_encode proved to be very useful in the
storage of user data within a document. The function writes the image as
binary data, which can later be translated back to an image.

3. Project Management: CiviCore indicated to us that this is how many “real
world” projects might go. An initial research stage to identify existing
solutions, their viability, and their patterns is an important part of software
design might be a part of many development cycles.

4. Paired Programming: Paired programming helped tremendously during the
course of the project. It helped us provide better formatted code, more robust
solutions and it created a more equal workload on the team.

5. Version Control: Git helped us work on the project more efficiently. We
spend little time informing one another of small changes, and overall had a
more uniform, directed project.

VIII. Glossary

Business Intelligence (BI) - refers to computer-based techniques used in spotting,
digging-out, and analyzing business data, such as sales revenue by products and/or
departments or associated costs and incomes.

CSS (Cascading Style Sheets) - a style sheet language used to describe the presentation
semantics (that is, the look and formatting) of a document written in a markup language.

Git - a distributed revision control system with an emphasis on speed. Git was initially
designed and developed by Linus Torvalds for Linux kernel development.

HTML (HyperText Markup Language) - the predominant markup language for web
pages.

PDF (Portable Document Format) - is a file format created by Adobe Systems in 1993 for
document exchange.

PHP: Hypertext Preprocessor - a widely used, general-purpose scripting language that
was originally designed for web development to produce dynamic web pages.

Stable Sorting Algorithm - sorting algorithm which preserves the input order of equal
elements in the sorted output.

SQL (Structured Query Language)- a database computer language designed for managing
data in relational database management systems (RDBMS).

Tomcat - an open source servlet container developed by the Apache Software Foundation
(ASF).

XML (Extensible Markup Language) - a set of rules for encoding documents in machine-
readable form. It is defined in the XML 1.0 Specification produced by the W3C, and
several other related specifications, all gratis open standards..

Definitions from Wikipedia.

Appendix A

I. Introduction to Business Intelligence (BI)

There are a couple of different architecture types that can be implemented with business
intelligence software. One possibility is for the platform to run locally and produce
reports that can then be distributed. For the purposes of this appendix this will be referred
to as desktop-based BI. This architecture is shown in Figure 10. The BI software can
actively run on a server and be accessed from a web browser. This architecture is shown
in Figure 11. In this architecture, reports are designed, either with a desktop-based BI tool
or through some sort of integrated web based designer, and placed online for users to
view and possibly edit to their specifications. For the purposes of this appendix, this type
of BI will be referred to as server-based BI.

Figure 1: Desktop based BI architecture

Figure 2: Server based BI architecture

II. Business Intelligence Platform Summary

 Based upon the functional and non-functional requirements given to us by CiviCore, we
evaluated eight BI platforms. We evaluated these platforms based on cost, report retrieval
methods, report designing, security and output formats. Additionally, all of the platforms
met the basic requirements given to us by CiviCore. Therefore, all of these platforms are
either java or PHP-based, interface with MySQL, and allow for the selection of specific
fields, groupings and summarize data.

Our evaluations of these products is as follows:
A. BIRT
BIRT stands for Business Intelligence and Reporting tools. BIRT is free and open source.
It is developed by the Eclipse Foundation. A report designer plugin is available for the
eclipse IDE providing a desktop-based BI solution, however this tool is not very intuitive
for a novice, and would likely necessitate some knowledge of SQL to use properly. BIRT
can also be used embedded on a server. Supported output formats include HTML, PDF,
WORD, XLS, and PostScript.

B. Jaspersoft
Jaspersoft offers a suite of open source BI solutions written in Java. It has both a free
community edition and a $250.00 enterprise edition. Both editions offer a desktop report
designer, iReport, which requires some knowledge SQL. Both editions also offer the
ability to view reports online via Jasper Server. Access privileges can be controlled per
user. Jaspersoft's enterprise edition offers a variety of output formats for the report
including; PDF, HTML, XLS, CSV, RTF, TXT, XML and Flash.

C. Pentaho
Pentaho offers a suite of open source BI solutions written in Java. It has both a free
community edition and a for cost enterprise editions. Both editions offer a desktop report
designer, Pentaho Reporting, which would require SQL knowledge, like most of the BI
software we reviewed. Additionally, Pentaho offers a BI Platform which provides server-
based functions. This would allow users to access reports online. Access privileges can
be controlled per user.

D. MyDBR
MyDBR is a server based BI solution written in PHP. It is not open source, but rather it is
distributed as encoded PHP. This requires the installation of the ionCube decoder in order
to use this software. The software is offered as a free community edition, requiring
monthly license renewal and having some limitations, or as a premium edition, with a
yearly cost of 129 EUR.

The report designer was not very intuitive, and would definitely require SQL knowledge
to use it efficiently. Additionally, the functions provided by the software for operations
such as summing and counting columns were text based and would need to be learned to
effectively use the software. Report retrieval was online and reports could either be
viewed as an HTML document or output to an excel file. The system allowed for users
and groups to be created and reports to be assigned to be accessible based on user or
group privileges.

E. Crystal Reports
Crystal Reports is a desktop-based BI solution. It is sold for cost as a $400.00 enterprise
edition. Crystal Reports offers a desktop report designer which is relatively intuitive
compared to the other tested solutions, although it still requires some knowledge of SQL.
Access privileges are controlled at the database level. Crystal Reports report formats
include; PDF, HTML, XLS, CSV, RTF, TXT, XML and DOC.

F. SpagoBI
SpagoBI is a full BI suite which takes advantage of a variety of open source BI engines,
including BIRT and Jasper. SpagoBI is free and open source providing a server-based BI
platform. It is entirely web based, providing both report design and retrieval
functionality. Security is user based and reports can be output to HTML, PDF, XLS,
XML, TXT, CSV, and RTF.

G. LogiReports
LogiReports provides a free web-based report platform. Security is user based. Reports
are created and retrieved online. It is provided for both Java and a .NET. Reports can be
output to Excel, Word, CSV, HTML and PDF.

H. Elixir
Elixer is a professional BI solution. It provides both desktop and server based BI features.
However, it is not open source and comes with a $10,000 price tag. Reports can be

designed and retrieved both on the web or desktop. Security is user based. Reports can be
output to PDF, HTML, PS, XLS, CSV, Glint, IML, image, RTF, TXT, or XML.

