

Math City

Client: Dr. Irene Polycarpou

Team: Amanreet Bajwa, Nick Hansen, Levente Sipeki, and Joe Zeimen

Abstract

Math City is a game designed to help 5th-grade students learn the fundamentals of

mathematics to improve their CSAP scores as well as learn about renewable resources.

The Math City project for the client, Dr. Polycarpou, involved creating a wider variety of

math questions for 5th-grade students, and an improved feedback system. The

motivation for this project came from a lack of proficiency in Colorado's math scores on

the CSAP. Only 63% of 5th-graders were proficient or above in mathematics on the

CSAP[1]. Currently this project is focused on 5th-graders, but has the ability to expand.

Using this system, 5th-grade students can improve and reinforce their basic math skills

while learning in a fun environment.

There were three primary requirements for this project. First, the team needed to

increase the variety of math problems that will be featured in the game to advance the

user’s math skills which required some changes in functionality. Second, enhancements

needed to be made to the feedback that is provided when the user answers a question,

not only providing a “correct” or “incorrect” indicator, but hints on how to solve the

problems as well. Finally, any bugs that were residing in the code were either

documented or fixed and bugs created during development were fixed.

To increase the variety of math problems we implemented a sophisticated algorithm

based on the user's input and problem-solving history. To enhance the feedback system

we added more visual hints as well as examples. These visual hints are given upon the

user's failure to answer correctly, or by the request of the user. All program components

are designed to be easily used and understood by fifth-grade students.

In the end all the objectives were completed. We refactored the problem system, added

twelve new problem types, added GIFs to the feedback, and included a progress bar in

the score frame.

Requirements Specifications

Introduction

Our client is Dr. Irene Polycarpou, a professor at Colorado School of Mines (CSM). The

system that the client has provided is a game called Math City which is an ongoing

graduate project at CSM. Math City is designed for students in the 5th-grade to practice

math questions for the Colorado Student Assessment Program (CSAP) as well as learn

about renewable energy sources. Over time the game will expand to include questions

for grades K-12 but currently the focus is on 5th-grade questions. The motivation behind

this program is to improve scores students are receiving on standardized tests like the

CSAP. According to the Colorado Department of Education, only 63% of 5th-grade

students were proficient or above in mathematics on the CSAP. The idea of Math City is

to reinforce the basic mathematical concepts required to succeed on standardized tests.

Since every student is required to take the CSAP, this program could be very beneficial

not only to the students but also to the educational system.

Math City allows users to create virtual cities that include houses, hospitals, police

stations, and fire stations. Additionally, there are sources of power, such as coal plants

and windmills, and industrial buildings that provide jobs. Power lines are required to

connect power sources to buildings. The primary goal of the game is to maximize

“happiness” indicators related to factors such as number of jobs, pollution, and services.

The coal plants create pollution and decrease happiness whereas the windmills do not

affect pollution. Everything in the city requires money to be built which, in turn, forces

the students to answer CSAP practice questions in order to make more money to

continue playing.

The goals for advancing the Math City project were prioritized on a functional basis.

First, a wider variety of questions needed to be added to the question set from CSAP

question examples. Second, more feedback needed to be given to the user when a

question is answered incorrectly. Rather than just telling the user they answered

incorrectly or correctly there is feedback that encourages the student to use the hints if

the program finds that they are sturuggleing.

Requirements

The client asked us to focus on increasing the number and type of mathematics

questions for a 5th-grade audience as well as add and improve the feedback the user

receives when answering questions.

A. Functional requirements

 The product has these additional functionalities:

1. More questions and types of questions to the game. These questions are similar

to what a student will see on a standardized exam. The user gets a reward of

additional funds comparable to the difficulty of the question.

2. Improved corrective feedback on questions. If the user answers a question

incorrectly he or she should see the right answer. If he or she answers the same

type of question incorrectly again, the user should get an explanation of how the

question can be completed correctly.

3. Fix and document any bugs we find in existing code.

Our first priority was to work on the questions and feedback in the game. The game is

meant to teach children math in a fun game setting.

B. Non-Functional requirements

1. Write code in Java.

2. Add and modify the code existing on the Google Code repositories to implement

the new or improved features.

3. The game should be geared towards a 5th-grade audience.

The game is currently targeted at a 5th-grade audience, but we also had to keep in mind

that we needed to make it easy to add questions so that other grade levels could be

implemented.

C. Scope

The most important aspect was to increase the number and variety of math problems.

The problems we made were designed to resemble what a 5th-grader would see on a

CSAP test based on released items from previous CSAP tests. This will ensure that a

5th-grader has familiarity when actually taking a standardized test like the CSAP. In

broadening the scope of problems, the feedback requires more in depth explanations

for difficult problems. We focused on adding those step-by-step explanations so that a

5th-grader could potentially learn from the examples without having to consult anyone

for help. Creating this kind of feedback was our priority in this project.

D. Use Cases

There are many different types of questions we can ask. Most of the questions will be

very similar with minor differences in flow. This is a use case for a generic question.

Question Use Case:

1. User clicks the "Get more money" button.

2. User is presented with a question. Difficulty is based on whether the user selects

the “More” or “Less” money button. The “More” money corresponds to a higher

level of difficulty while the “Less” money button corresponds to a lower diffuclty.

3. User types or clicks an answer, the close button, hint, next or score button.

a. User clicks an answer the program displays whether or not the question

was correct.

i. The answer is correct. Give user more money in the game.

ii.The answer is incorrect. Display the correct answer. If the user has

missed this type of question before in the recent past suggest the

user look at the hint of how the mathematical operation is

performed.

iii.Enable the "Next" button to be pressed.

b. The user clicks the "Next" button. The next question is displayed and we

return to 2.

c. The user clicks the “Score” button. The score dialog displays how many

questions the user has gotten correct and incorrect and what types of

problems he or she is struggling with as well as a progress bar. The score

is tallyed from when the game is first run to when it is closed. User must

close the window to get back to the previous window.

d. The user clicks the hint button. The program displays a new window with

an animation describing how to solve the problem.

e. The user clicks the close button. The window closes and game play

resumes.

System Design

High-level Design

1. Question Expansion - The subsystem for questions was expanded to contain a

wider variety of questions. The list of questions added can be seen on the

attached chart. We looked at released items from CSAP as well as other

educational websites to word our questions most appropriately for a 5th-grader.

The order in which questions are given has also been revised to adjust to the

difficulty level that the student is at.

2. Feedback Before we started, the user only knew if he or she answered the

question correctly. We have changed the game so that they know what the

correct answer was after they answer the question. It gives encouraging

feedback based on how the student is doing. If the student is incorrectly

answering questions it reminds them that there is a hint that they can look at.

Design Detail

Question Expansion – We refactored the system that we inherited by generalizing it.

Figure 7 illustrates the previous system design.

The manager class is responsible for getting a problem from a problem factory, and

passing that problem to the appropriate GUI interface. For example, the manager asks

the problem factory to generate a new problem based on the player’s history. It then

passes that question to the GUI component that is responsible for displaying a problem

of that type. The manager then displays the GUI for the question.

The problem factory takes information from the player’s history then references an

enumerated type (ProblemTypeEnum) to create a new question. The ProblemTypeEnum

contains the information needed to create a problem. It is a common place to store a list

of questions and information. The factory creates a problem based on this enumerated

type. As you can see in the figures below, we have abstracted the current classes so

they can be reused with any class for an answer.

Figure 4 shows our revised UML design. The classes whose parent is Problem are

objects that represent a question and the classes whose parent is QuestionGUI are the

graphical face of those problems. Previously the questions were hard coded to only take

a fraction as the answer. This is obviously not desirable because other questions will

not use fractions at all. To make it more abstract, we changed the class Problem to

make it a generic class. This way we can choose anything to be the answer. We also

made the problem factory an interface so that we can switch out factories easily without

changing any code.

Note that the UML for the new design only has some of the problems and their graphical

counterparts the JPanels. If a new problem needs a different graphical layout or

different parameters to show for the question, new classes can be created by only

implementing question text and the response area. The rest of the functionality is

defined in the QuestionGUI class. For almost all problems, only the enumerated type

and the create function in the problem factory need to be altered to add a new question.

The only reason why there would need to be more coding than this is if a different layout

for the GUI is needed. In this case the programmer would need to create a new

subclass of QuestionGUI.

We have added a new main routine that is a teacher mode for displaying the questions.

This way the teacher doesn’t need to run the entire game to preview the questions. It

also has a short description of what kind of problem the teacher is looking at in the title

bar.

Results

Our project included implementing new problem types and a better feedback system.

We completed these tasks as well as refactored the question system so that it is easier

to add different types of questions. We were able to meet the requirements by adding

twelve new problem types, improving the feedback system and score system. We

added the question types as well as improved the look of the questions by increasing

font size and changing the color to make it more child friendly, as seen in Figure 3. The

old question layout can be seen in Figure 2. The score and feedback systems were also

improved by adding a progress bar and GIFs that show the user how to answer different

problem types. The progression of our project included a lot of coding and research. We

spent a few days researching different types of 5th-grade questions and how they were

worded to portray the feel of answering CSAP questions in the game. About a week

was spent refactoring the question system and attaching our new GUI layouts to the

system. Lastly, a couple days were spent adding in all the new problem types.

Conclusion

Lessons Learned

Throughout this project we implemented a wide variety of functionality. These advances

included creating more problem types to better suit the CSAP curriculum on a 5th-grade

level. Along with the functionality of this addition, we have added a progress meter to

measure the level at which the user is at, as well as show the statistics of the success

for answering questions. Advances have been made to make a more sophisticated

algorithm for moving between the levels of problem difficulty.

We inherited a lot of code for this project. Sorting through this code was our first major

problem to deal with. The code had been written by several different people before us

and some of the classes were inadequatly commented. The best way we found to

understand this code was to meet with one of the people who worked on this project

before us. It saved us a significant ammount of work and let us understand why they

chose the path they took. We were ready to implement the questions in a much more

confusing way until we met with the person who worked on this project before us. Then

we were able to understand and expand of of his ideas.

Another frustrating aspect of this project was getting Subversion to merge different code

the right way, when multiple people were working on the same part. This problem was

only fixed by being very careful and making sure that everything works in the right

manner after every commit and updating often. The second most troubling challenge

that we encountered was refactoring the code. The issue with that was that the right

changes had to be made in the existing code for it to work. This required us to learn the

code very well and trust our changes, because there was no way to know if our changes

were working until the very end. We also learned the ins-and-outs of the Eclipse IDE. It

was very helpful to use the features it provides to help us refactor.

In the future this project requires improvement for everything to work completely in a

classroom setting. The questions should be expanded even more to be able to

encompass everything in the CSAP curriculum of the fifth grade level. Also, the tutorial

feature should be implemented to provide a better game play experience for the user.

With the tutorial feature, the user could quickly learn important parts of the game without

having to learn the game with trial and error. Implementing these steps would provide a

smoother and more enjoyable game-play, making the 5th-grade learning experience a

better process.

Adding new Questions

To add most new questions there are three main places where code needs to be added.

The first is adding a new type to the ProblemTypeEnum. The ProblemTypeEnum is an

enumerated type that holds information for the factory and other classes to make the

problem. The new problem type contains information as to what type of problem it is,

the difficulty, where the image is for displaying a hint, and other useful information.

In the problem factory a new function needs to be added to hold the logic for creating

the problem text and the correct answer. If it is a multiple choice question, it also needs

to generate some wrong answers.

After adding the function to make the question, the factory needs to be able to call the

function. This is done in the create function of the problem factory. It uses a switch

statement based on the enumerated type and then calls the make function.

For example, to make a new problem that quizzes the student on finding a least

common demoninator, we start with the enumerated type. First a new type needs to be

created, we will call it LCD. In the enumerated type we will set the parameters to tell it

that it is a multiple choice problem with difficulty 3. It also is expecting an integer for the

answer and the location of the animated GIF we created if the user needs a hint.

In the problem factory a new function is created called makeLCD which takes in a

MCProblem<Integer> as a parameter. This function picks two random fractions then

finds the least common denominator. It sets that as the question’s answer with a setter

function. We also can set it as one of the choices by adding it to the array list in the

question with the function getChoices().add(answer). Dummy answers can be

added in the same way, they should look like plausable answers. Now just set the

problem text with another setter function taking a string and shuffle the answers with

another function in the question class.

Lastly the create function needs to be updated to know that there is a makeLCD()

function. This just involves following the way that other make functions are called. The

rest of the program will do the work for displaying the problem and checking the

answers.

Glossary

Happiness indicator - The status bars on the ToolBar window in the game. This includes

pollution, police, fire, health, and buildings.

 Figure A.

CSAP - The Colorado Student Assessment Program.

References

 [1] "2005-2009 Overall CSAP, Lectura, and Escritura Results." Colorado Department of

Education.

http://www.cde.state.co.us/cdeassess/documents/pressreleases/changing_conversation

s/2009_CSAP_TablsPRelease.pdf

 [2] “Colorado Student Assessment Program (CSAP) Released Items”

http://www.cde.state.co.us/cdeassess/released_items.html

[3] “IXL - 5th Grade Math Practice”

http://www.ixl.com/math/grade/fifth/

[4] “AAA Math - Fifth Grade”

http://www.aaamath.com/grade5.html#topic1

[5]“Everyday Mathematics and NCTM curriculum Focal Points”

https://www.wrightgroup.com/download/em/EM3_Focal_Points_Brochure.pdf

Figure 1. More or less money

Figure 2. The old question GUI

Figure 3. The new question GUI

Figure 4. UML for Questions

Figure 5. UML of the graphics and buildings.

Figure 6. UML of control

Figure 7. Previous Question System

Problem Specifications Chart

Problem Type Wording
Answer
Type

Input/Multiple
Choice

Difficulty
level/
value Notes on creating question numbers

Reduce to Simplest
form

Reduce the following fraction
to the simplest form : 5/25 Fraction Input 3/$30

Question number is created from set answers (1/2 ,
1/3, 1/4, 1/5, 3/4, 2/5) then multiplied by a random
number

Equivalent Fraction
Choose the equivalent fraction
to 1/4 Fraction Multiple Choice 1/$10

Answers are generated by random fractions except for
the answer when a random number is multiplied by
the question

Convert to improper
fraction

Convert the following mixed
fraction to an improper fraction
1 1/5 Fraction Input 2/$20

Random number generation for the question, answer
is calculated from question

Least common
denominator

Find the least common
denominator for the two
fractions: 1/4 and 1/3

Number (only
looking for
denominator) Input 3/$30

Random number generation for the question on a
level of (1-10). Answer is calculated from question.
Random number generation is from 10-50

Compare fractions
and mixed numbers

Find the equivalent to the
following mixed number: 3 3/4 Fraction Multiple Choice 5$50

Random number generation 1-10 for mixed number
and calculated form question. Then random number
generation from for numerator only. Denominator
pulled from question.

Round mixed
numbers

Round the following mixed
number to the nearest whole
number 2 3/4

Whole
number input 4/$40

Random number generation 1-10 for mixed numbers
and fraction number generation is 1-20. input
calculated form generated question

Adding different
denominators 4/9 + 3/7 Fraction input 9$90

Random number generation of 1-10 on the fractions.
Answer calculated.

Rounding decimals

Round the following decimal
number the nearest whole
number: 1.332

Whole
number Multiple choice 7/$70

Random number generation 1-50 for all individual
numbers on the question. Answer calculated. Fake
answers include one answer rounded the wrong way
and two decimal numbers with close answers

Convert fractions to
decimals

Convert the following fraction
to a decimal 3/4

Decimal
number Multiple choice 8/ $80

Random number generation 1-10 on question fraction.
Answers calculated and random number generation
with same whole number answer as answer (i.e.
Answer: 2.5 fake answers: 2.4 2.75)

Place values in
decimal numbers

What digit in the tenth place
123.456

Whole
number Multiple Choice 6/ $60

Random decimal number generation. Answer
calculated from question. Fake answers include other
individual numbers in question

Subtracting unlike
denominators 4/9-1/4 Fraction Multiple Choice 10/$100 Same process as adding unlike denominators

