Mountable Transparent I/O Tracing Facility

A Proposal for the

Colorado School of Mines Field Session

Meghan Wingate, John Bent, James Nunez, Gary Grider

{meghan, johnbent, jnunez, ggrider @ lanl.gov}

Los Alamos National Laboratory (LANL)

03/30/2009

Background/Motivation

The need for increasing scale in scientific computation drives the need for rapidly increasing scale in storage capability for High Performance Computing (HPC). Additionally, the rapid acceptance of Data Intensive Super Computing (DISC) also drives the desire for high performance and highly parallel storage deployment. Individual disk storage devices are rapidly getting denser while their bandwidth and agility is not growing at the same pace, which makes the job of providing scalable storage solutions extremely difficult as time goes on.

Storage systems for HPC and DISC environments exceed 50,000 disk drives involved in one parallel job. The desire to be able to efficiently utilize the massive resources involved in these tasks is great. While disks are somewhat agile for performing random operations, they are far more efficient at more serial I/O workloads. HPC applications due to their massive parallelism in machines approaching one million processing cores offer a wide variety of I/O workloads for the disk storage to deal with, from simple serial efficient patterns to highly random. Additionally, DISC machines offer similar workload variety.

To assist I/O and storage researchers to better build storage systems to cope with these demanding workloads in an efficient manner, it is vital that the I/O workloads be understood. One of the most important tools for understanding I/O workloads is tracing. Accurate low overhead traces are needed as researchers do not always have access to run the applications or run them at scale. Tracing in a transparent to the application way in a large parallel machine is difficult. Many methods have been tried, from interposer libraries which capture I/O library calls, to kernel trace event mechanisms. Some approaches require application assistance while others don’t. In the parallel setting, there is no clear winner in approach for an I/O Tracing mechanism.

Proposed Work

We propose to build a mountable file system based I/O tracing utility. The benefits of such an approach are:

· Requires no changes to applications, can be used by simply changing the path to the desired application file

· Only traces I/O calls, thereby being quite possibly very low overhead

· Would operate on Linux for any application including dusty decks

· Could leverage open source file system projects

Normally, file system activity can be characterized by the following diagram, where the user application calls for I/O which is routed by the kernel VFS layer to the appropriate file system.

[image: image1.png]Normal 1/O
Operation

User Application

VFS layer

File System

1o
Request

We propose to utilize the File System in User Space (FUSE) open source file system as the basis for the solution. The FUSE file system is an existing file system layer which reroutes I/O requests to a FUSE user space daemon which can operate on I/O operations on behalf of the application which is depicted by the following diagram.

[image: image2.png]FUSE File System 1/0O

User Application

FUSE File System Daemon

VFS layer

FUSE File
System

-

1o
Request

File S?/stem

We propose to modify the FUSE file system to allow for two types of tracing. The first type would be output of a tracing record to a filesystem file for every I/O operation, with the choice of whether or not to actually perform the I/O. The second type of tracing would be collecting I/O operation counters in memory in the FUSE file system and publishing those counters in the /proc file system of the operating system. The following diagram depicts these options.

[image: image3.png]FUSE File System I/O with Tracing Modifications

User Application

FUSE File System Daemon

/proc/fusetrace

VFS layer

Trace Output File

FUSE File
System

-

1o
Request

File S?/stem

If successful, we propose to publish these changes to the open source community for others to exploit. We will try these modifications out on a parallel computer to trace parallel HPC and DISC applications which can be used to characterize the I/O patterns of these applications.

Skills Required:
Knowledge of C programming

Some kernel knowledge/programming

PAGE
2

