
 

 

Ascend Geo: Levitation Test 
Client: Michael Ewing, Ascend Geo 

Team: Ryan Lee, Tyler Tift 
 
 
 
 
 
Ascend Geo is a company that designs hardware and software for 
geophysical applications.  One of the most commonly used tools in this 
field is a geophone, a device used to measure ground velocity in 
conjunction with many others.  Often, however, a geophone is planted 
improperly or becomes flooded, causing it to behave differently.  The 
purpose of this project was to create a simulation modeling a 
geophone’s reaction to input currents and design an algorithm to 
determine a geophone array’s functionality.  The simulation’s purpose 
was to aid in determining what bounds should be set on the data so that 
the algorithm can decide to reject further input from an improperly 
functioning geophone array. 

 
 
 



 

 
 
 

 
 
 
 

Ascend Geo Levitation Test 
 
 

Client: Michael Ewing, Ascend Geo 
 
 

Team: Tyler Tift, Ryan Lee 



 

Table of Contents 
 
Introduction     ………………………………….. 1 
Requirements    ………………………………….. 2 
 Functional Requirements  ………………………………….. 2 
 Non-Functional Requirements ………………………………….. 2 
 Scope     ………………………………….. 3 
System Design    ………………………………….. 3 
 Design Goal and Risks  ………………………………….. 3 
 High-Level Design   ………………………………….. 4 
 Detail Design    ………………………………….. 6 
 Formula Design   ………………………………….. 8 
Design Decision    ………………………………….. 8 
Conclusion     …………………………………..    10 



 

 

Introduction 
 
Ascend Geo is a subsidiary of Aspect Energy, a company dedicated to finding new 
natural gas and oil reserves.  Ascend Geo develops both hardware and software, used in 
geophysical applications, to aid the discovery of new resources.  One of the most 
commonly used tools to search for reservoirs is a geophone.  A geophone is a device that 
measures ground velocity through a mass-spring system.  A mass with a copper wire 
wrapped around it sits inside a magnet.  The magnet, in turn, is attached to a solid plastic 
casing.  This casing is mounted on a spike, which is then planted in the ground.  After 
setting up all of the geophones to be tested, they are excited by a ground movement, 
which is usually caused by an explosion or some other large shock.  As a geophone 
moves, the casing, attached to the ground through the spike, moves around the mass.  As 
the mass then proceeds to oscillate through the magnetic field, a current is induced in the 
geophone’s internal circuit.  This produces an output voltage from the geophone relative 
to the ground velocity.  In order to obtain meaningful data, many of these geophones are 
connected in series, making what is known as a “line.”  These lines are then attached in 
parallel with each other in what is called a geophone array.  All the information is 
collected by a recording device and analyzed later at a host machine.  Using this data, 
some fairly accurate estimates as to the composition of the ground beneath the surface 
can be made. 
 
The problems often experienced in the field are that geophones are poorly planted in the 
ground or the information they give becomes otherwise unusable due to ambient 
conditions, including floods, landslides, or various animals attempting to eat the 
geophones, which cause spurious noise.  Unfortunately, the recording device that a 
geophone array is attached to indicates a functioning status as long as anything that has 
some internal resistance is attached to it.  In this case, all the geophones attached to a 
device may not be returning any data at all, rendering the entire endeavor useless. 
 
There are two goals for this project:  create an accurate geophone simulation, and develop 
an algorithm to help determine whether geophones are functioning.  The simulation will 
be modeled after what is referred to as a “levitation test.”  In this situation, instead of the 
geophones being excited by a shockwave in the ground, a constant current is introduced 
to the geophone array.  This current is abruptly cut off and the resulting voltage produced 
by the geophones is recorded.  This test is typically used to determine whether a 
geophone is still functioning properly after particularly rough handling or to help 
calibrate various elements of the geophone.  The simulation allows the alteration of 
various parameters, including internal resistance and natural frequency of the geophone.  
Using this simulation, practically any condition in the field can be emulated.  At the same 
time, ideal functionality of a geophone array can also be simulated.  The algorithm for 
making a decision about array functionality will work by rejecting any data that falls too 
far outside of the ideal values that should be obtained from the geophone array.  This 
algorithm will be implemented on the recording devices, and with the aid of the host 
machine to calculate the values to be compared, can end the recording process entirely so 
that analysts don’t have to slog through useless data. 
 



 

 
Requirements 
 
I. Functional requirements 

1. Characterization of input parameters and system response for a geophone.  

2. Creation of a simulator to capture input parameters and generate data response.  

3. The simulator will have inputs of tilt of the geophone, physical characteristics 
of geophones, and number of geophones. 

4. Graphical representation of the geophone or array of geophones. 

5. Graph the results of the simulations. 

6. Analysis of data response and comparison to known responses for the creation 
of a device state algorithm and approximation of device parameters.  

Of these requirements, the first is the most important for the simulation.  The client 
absolutely requires that requirement 6 be met, but in order to do so, the first two 
requirements must first be achieved.  Therefore, creation of the simulation with an 
accurate geophone response is paramount to creating an algorithm to determine geophone 
array functionality. 

 

 II. Non-Functional requirements 

1. Students will need to be able to meet with employees on-site (Golden area) at 
various points in the project 

 
2. Must create interactive GUI for simulation 

 
3. Algorithm must be .NET  2.0 compatible 

 
4. Client would prefer use of Visual C++ 2005 as IDE 

 
5. The simulation should be stand alone. 

 
6. Output should be viewable in Excel 

 
7. The algorithm needs to be under a few KB to fit on the recording device 

8.   Accessible user interface with intuitive design 



 

The client specifically stated that the algorithm’s final implementation must be able to 
run in .NET 2.0.  In addition, the client stated that he would greatly prefer the IDE used 
for this project to be Visual C++ 2005 Express Edition.  These requirements determined 
the developing environment for the project. 
 
As a final note, the simulation should be able to run regardless of what computer it’s on 
as long as the proper resources are included in its folder.  The simulation should be able 
to run in any Windows 95 or greater environment.  Also, the data generated by the 
simulation should be able to be exported to an Excel file so that it can be viewed outside 
of the GUI should the user choose to do so. 

 

III. Scope  

This project encompasses the creation of a simulation of geophones and an algorithm 
analyzing functional status. The simulation must be accurate enough to allow for the 
modification of geophone parameters to emulate most conditions that can be experienced 
in the field.  The algorithm must be small enough to fit into a very limited space so that it 
can be implemented on the recording devices.  By the end of the 6th week, the algorithm 
must be provided to the client and the simulation must provide a reasonable response. 

 

 

System Design 
 
I. Design Goal and Risks 
 
The goal of the project is to create a simulation that accurately represents a geophone’s 
response in a levitation test and use these results to determine an algorithm and tolerance 
values for geophone functionality.  In addition, an individual geophone’s values in the 
simulation should be alterable in order to simulate field conditions. 
 
 
 
 
 
 
 
 
 
 
 



 

Required Tasks 
 

1. Set up developing environment: Windows Forms Application in Visual C++ 
2005 

 
2. Create GUI skeleton for later editing 
 
3. Derive equation to approximate geophone response 

 
4. Write functional classes 
 
5. Implement GUI inputs 

 
6. Implement graphing area 
 
7. Implement visual representation of geophone array 

 
8. Add additional elements requested by client 

 
Risks 
 
1. Technology Risks 
 
The primary risk for this project was the ability to accurately determine the response of a 
geophone in given situations. 
 
Limiting the algorithm to the codespace available on the recording devices was a bit 
daunting until it was actually implemented.  As it worked out, the algorithm simply 
requires some values to be calculated on a host and then compared on the geophone 
recording device. 
 
2. Miscellaneous Risks 
 
A lot of the simulation’s effectiveness depended on being able to correct it to better 
resemble actual data.  As we never actually received this data, there was no way to 
actually verify the model. 
 
 
 
II. High-level Design 
 
 
1. User Interaction 
 
The system will accept input from the user (individual geophone eccentricities, 
environment, etc.) and output a resulting graph and optionally a text file for later analysis, 



 

as shown below in Figure 1.  The program will also output a functioning status based on a 
tolerance input by the user. 

 
Figure 1: User interaction 
 
 
 
2. Design Process 
 
Several steps were taken, in order to accurately simulate a geophone’s response to 
electrical input. First, a simple harmonic oscillator without damping was modeled.  The 
system was then modified to under-damped harmonic motion using a rough 
approximation of a geophone’s response.  Then, based on physical data about a geophone 
the under-damped model was rectified to better represent a geophone’s output. The next 
phase of enhancing the simulation was to include analyzing actual data to determine 
whether the simulation model is comparable to realistic response.  Unfortunately, due to 
uncontrolled circumstances, no actual data was ever received. 
 
The algorithm decides whether a line is functioning within given tolerances of 
precalculated theoretical values.    
 
The GUI consisted of designing and modifying a Visual Studio form application.  The 
form uses an external graphing utility and takes several key inputs, e.g. current, shunt 
resistance, etc.  The GUI also contains an interactive display of the chain of geophones 
that allows for changes in input data to be made to individual units. 
 
 



 

 
 
III. Detail Design 
 
1. UML Diagram 
 
A UML diagram detailing the interaction between proposed classes is shown in figure 2 
below. 

 
Figure 2: UML diagram 
 
2. Description 
 
Form1 contains an instance of Simulation and dynamically creates a GeophoneForm 
when needed.  Simulation contains a vector of GeoStrings, each of which contains a 
vector of Geophones.  Simulation, GeoString, and Geophone all contain an instance of 
the Variables class and several Pairs.  Form1 also uses RectPair for determining whether 
a click in the interactive area is valid. 
 
 
 
 
 
 
 
 
 



 

 
 
C.  GUI  
 
Below is a screenshot of the GUI 

 
 
Figure 3: GUI ScreenShot 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
Below is a picture of the geophone alteration window. 

 
Figure 4: GeophoneForm 
 
 
IV. Formula Design 
 
In order to accurately simulate a geophone’s response to a step current, quite a bit of 
research was required; a significant portion of the work included determining exactly 
how a geophone works and how certain physical characteristics interact with each other.  
After determining these relationships and acquiring the necessary data from our client, 
we were able to produce a second order linear differential equation modeling the motion 
of the geophone given an input current.  After going through the process of integrating 
this equation and taking into account voltage sensitivity, we finally arrived at an equation 
for output voltage in terms of an input current.  This input current is determined by the 
number of geophones in the array and their individual impedances. 
 
 
 
 
 
 
 
 
 
 
 
 



 

The equation for output voltage in terms of input current is defined as 
 

Eq. 1 
 
 
 

where 
  

    Eq. 2 
 
 
 
  

    Eq. 3 
 

 
 

 
    Eq. 4 

 
 
G is the voltage sensitivity, ω0 is the natural frequency of the system, i0 is the input 
current, ζ is the damping ratio, k is the spring constant, m is the mass, and t is the time. 
 
 
Design Decision 
 
We did not have to choose the language as the client asked us to use Visual Studio C++ 
2005 and .NET 2.0.  Our client also asked us to have a graphical display of the 
simulation. He suggested we use .NET to control Excel in order to facilitate data 
manipulation. However, we had trouble getting .NET and Excel to talk to each other so 
we decided to make a menu item that will output the data to a comma separated value 
(CSV) file. We then had to find a way to graph the data since we were no longer using 
Excel. We thought about writing a graphing function ourselves, but that might have been 
limited in functionality due to the time constraint.  Another option was to find some 
previously written code that we would be able to use. We ended up going with the latter 
option and we were able to find an exceptional graphing utility: ZedGraph.  
 
ZedGraph has much more functionality then we would have been able to come up with in 
the short time we had to work on it. Some of the functionality of ZedGraph that helped us 
decide to use it was that it has zooming and panning functions. These functions are 
useful, but would have been beyond the scope of this project for us to implement 
ourselves. After Finding Zedgraph the next problem was its licensing. ZedGraph is 
licensed under Library General Public License (LGPL) which states that if any 



 

modifications to the library are made, then the source code must be made public. 
However, if no changes are made to the library the program, it is just a work that uses the 
Library and is outside of the scope of the license.  Since no changes were made to the 
library in our development, there is no fear of violating the license agreement. 
 
We wanted an interactive interface to show the setup of the geophone array. The first step 
to this was to dynamically draw a picture representing the orientation of the geophone 
array. This part was fairly straight forward.  We are using the System::Drawing library to 
make the graphics in a PictureBox. After we implemented the graphics, we ran into a 
problem. In some cases the Graphics object we were trying to draw was bigger then the 
box we drawing it into. Since the PictureBox class does not have an auto scroll feature 
we had to put scrollbars in manually. When we did this the scrollbars would not grab and 
move the graphics that were drawn into it. Our first approach was to use a child class of 
the Image class, Drawing::Imaging::Metafile.  We drew the graphics to a metafile image 
then saved a copy of the image to the computer and reloaded it. However, when we 
reloaded the image to the PictureBox it was still drawing it as a Graphics object instead 
of as an Image. This is because metafiles are vector graphics; it saves how the picture is 
drawn and not the final product. To get around this, we used another child class of Image, 
Imaging::Bitmap, to load the picture and get rid of the vector graphics. Since we were 
doing this in such a convoluted way, when we displayed the Image the transparent color 
of the Bitmap was also displayed.  We then realized we could just draw the graphics onto 
a bitmap. This made it so we had scrolling functionality, but didn’t have problems with 
the transparent color and weren’t creating superfluous files. 
 
The other major problem we had was with the environment. We were using the 
Windows::Forms designer to facilitate the creation of our GUI. After our project started 
to get fairly sizable, the designer would not load, giving as a reason that it had a parser 
error; we had declared and implemented some variables in the designer created code that 
had apparently caused this problem. We fixed this by going through the code line by line 
and commenting certain parts out to see where the problems were occurring. 
 

Conclusion 

The environment we used assured the algorithm was .NET  2.0 compatible. The 
algorithm was only a few lines of code so it was under the few KB limit.  The simulation 
was within acceptable standards.  The client was impressed with the program’s 
functionality and its presentation.  We were able to design and implement a simulation 
for geophone levitation. With this simulation we were able to develop an algorithm 
determining whether a levitation test passed or failed. Future work includes implementing 
hydrophones. Another area of future study is including more responses to different types 
of geophone failure.  

 


