iNSpect
iNSpect

Executive Summary
The Toilers Research Group is a graduate student research group at the Colorado School of Mines (CSM) focusing on wireless sensor networks. They have been developing a piece of software called iNSpect (interactive NS-2 protocol and environment confirmation tool) that graphically maps a set of nodes in a wireless network based on an existing trace file in one of three formats, NS-2, Nam, and Viz. The display consists of an optional background image, and various colored nodes representing machines that are part of the network, and are color-coded based on its activity.
Our task as members of this Field Session project will be to build on the existing program, features, and functionality. While iNSpect is an improvement upon its predecessors (notably NS-2), added reliability would make it more valuable as a research tool. The initial scope of our project was to add a live node color changing feature, add support for the Nam trace file format, design a new viz2Trace file format and its support parser, and fix some of the existing bugs in the software. However, the bug fixes was exchanged for a new software requirement – to create a new file reader class structure in which each supported file format would have its own class. The end result scope of work that was completed are as follows:
1. Add parsing capability for the Nam file format.
2. Allow users to be able to change the colors of the nodes while the simulation runs.
3. Alter the Viz file format to include mobility information (previously gathered from a separate file).
4. Redesign the file reader class structure to have a class for each file format.
5. Any changes made to the program does not affect its platform independence
As far as meeting the requirements go, we have replaced eventBuilder with FileReader which cuts down on the number of responsibilities that FileReader is responsible for compared to eventBuilder. It is more reliable as well as allowing the program to be easier maintained as well as adding additional features. In addition to the new class structure, Nam file format support as well as Viz 2 file format support are now supported. A Node Color tab was added to support on-the-fly node color changing which no longer requires the user to restart the program. The ability change node colors on-the-fly is a welcome feature. The user no longer needs to close the application, modify the configuration file and reload the application.
With the file reader class in place of eventBuilder, it should eliminate most of the bugs related to parsing the files, rewinding, and fast forwarding. With a new class structure in place, it should be easier for the next team or person that works on it to add additional features to the existing program. We also learned that keeping things as simple as possible can make all the difference in the world. It makes it easier to debug. It also allows understanding the implementation easier. In addition, making them as simple as possible allows for greater maintainability of the code.
Overall, we believe that the field session project with Toilers Research Group has given us additional knowledge on network simulators along with GTK along with a business environment work experience. There were a couple of problems that came about while working on iNSpect. However, working with it provided experience in GTK, NS-2, Nam, and Viz. It also provided experience working with actual clients that have requirements that need to be met. It was a good experience overall.
Table of Contents
2Executive Summary

4Abstract

4Introduction

4Requirements and Specifications

5Responsibilities

5Analysis

6Design or Solution Approach

7Color Selection

8File Reader

8Fast Forwarding

8Rewinding

8Parsing

9Conclusions and Future Directions

10Glossary

10Definitions, Acronyms, and Abbreviations

10References

10Appendix

10General information on file formats

10NS-2

12Nam

14Viz

Table of Figures
6Figure 1 - UML Diagram for iNSpect version 3.3

6Figure 2 - UML Diagram for changes in affected areas of iNSpect

7Figure 3 - Node Colors Tab

Abstract
iNSpect is a piece of software developed by the Colorado School of Mines’ Toilers Research Group to animate wireless network traces gathered from wireless sensor network software in standard formats. As field session students assigned to this project, we were given the task of adding features to the existing system that would allow users to actively select node color-configurations on the fly, and add support for new file formats based on a new class structure we designed.
Introduction
The Toilers Research Group is a graduate student research group at the Colorado School of Mines (CSM) focusing on wireless sensor networks. They have been developing a piece of software called iNSpect (interactive NS-2 protocol and environment confirmation tool) that graphically maps a set of nodes in a wireless network based on an existing trace file in one of three formats, NS-2, Nam, and Viz. The display consists of an optional background image, and various colored nodes representing machines that are part of the network, and are color-coded based on its activity.
Our task as members of this Field Session project will be to build on the existing program, features, and functionality. While iNSpect is an improvement upon its predecessors (notably NS-2), added reliability would make it more valuable as a research tool.
The initial scope of our project was to add a live node color changing feature, add support for the Nam trace file format, design a new viz2Trace file format and its support parser, and fix some of the existing bugs in the software. However, the bug fixes was exchanged for a new software requirement – to create a new file reader class structure in which each supported file format would have its own class.
The Nam trace file format is a common file format for wireless sensor network traces, and yet iNSpect did not have the capacity to support it. Adding support for this feature would simply add usability and flexibility for iNSpect’s users.
In the original vizTrace file format, no mobility information was stored, and so an additional file (containing the associated mobility information) was required in order to run the simulation. The next version of the vizTrace format (viz2Trace) is a marriage and margining of the two files, in that it contains the mobility information as specified by a new syntax very similar to the that of vizTrace.
During the simulation, each node has a color that designates the status of the node (one of five states: default, destination, dropped, forwarding, and originator). Users were previously allowed to select the color scheme, but only by way of stopping the program, changing the configuration file, and restarting the program. Our solution to the live node color-changing problem allows users to select these values while the program is running and optionally save them to the configuration file with a single click.
Requirements and Specifications
6. Add parsing capability for the Nam file format.
7. Allow users to be able to change the colors of the nodes while the simulation runs.
8. Alter the Viz file format to include mobility information (previously gathered from a separate file).
9. Redesign the file reader class structure to have a class for each file format.
10. Any changes made to the program does not affect its platform independence
Responsibilities
· Eric Chiu and Dan Lecocq
· Color Tab
· Allows users to change node colors on-the-lfy
· The new Viz 2 file format
· Christian Ward-Garrison
· Nam file format support
· Everyone
· The file reader class structure
Analysis
1. Capability for users to change colors of nodes while the simulation runs
a. GTK Color Button (gtk_color_button)
i. Launches a Color Selection Dialog
ii. Signal Connect to Object (g_signal_connect)
iii. Get GDK Color (getGdkColor)
b. Set GDK Color (setGdkColor)
c. Update Colors (updateColors())
2. File reader class structure
a. Easy extensibility for new file formats
i. All the abstraction is in one pure virtual function called parse.
b. All file format support requires a new class with a constructor and one function called parse which accepts a single line and returns an object representing the information contained in the line.
3. Parsing capability for the Nam file format
a. As described above, create a new class that has a function to parse a single line.
4. The new Viz file format (also known as Viz 2) and parse it
a. As described above, create a new class that has a function to parse a single line.
b. A new mobility line supported during parsing
c. The new format
i. Initializing
1. <node><time>move init <x-coordinate> <y-coordinate> <velocity>
0 0.0 move init 234.961083248912 66.053748521329 0.0000000000
ii. Movement
1. <node><time>move dest <x-coordinate> <y-coordinate> <velocity>
0 0.0 move dest 187.104043824181 49.279433698058 0.000000000
d. Uses a switch statement of enumerated events (each event has an integer representation)
i. Decides whether the line passed into the parse function is a transmission line or mobility line.
e. Parses accordingly with the switch statement
Design or Solution Approach
[image: image1.emf]
Figure 1 - UML Diagram for iNSpect version 3.3
[image: image2.jpg]fparsed

magine
i

Figure 2 - UML Diagram for changes in affected areas of iNSpect
Color Selection
The toolkit window contains all the tools necessary to interact with the system, and was originally divided into three tabs (Simulation, Controls, Capture Control, Viz Config). It makes sense to have the additional user-interface of the color-selection integrated into this toolkit window in its own tab (Node Colors). Contained in this tab are five GtkColorButtons, each of which corresponds to a node status type (default, dropped, destination, forwarding, and originator).
The GtkColorButton is designed to have an associated color, and when pressed, prompt the user with a GtkColorSelection selection box. A user then may choose a new color or cancel. When a new color is selected, the “color-set” signal is mitted. In this way, a user-defined function can be connected to this signal beforehand that grabs the color from the GtkColorButton and stores it in the appropriate spot (in vizProperties) and calls for all the nodes to update their colors based on their current states.
[image: image3.png]iNspect Toolkit

Figure 3 - Node Colors Tab
File Reader
Fast Forwarding
The mechanism is designed in such a way that a time is supplied into a function called forward in the file reader class. In that function, it will continue to read from that file until the supplied time is read in from the file. After that, it will read until a new time interval is given.
Rewinding
As we read in information from the file, we place a standard formatted line of each line of information into a temporary file. Each temporary file is limited to FileReader::LINE number of lines. This facilitates a search for a given time within the file because files can only be read in sequentially. It allows us to read at certain points of the file with certain limitations. For example, if that FileReader::LINE = 1000, then the 50,000th line is contained in 50.tmp. If we need to rewind to a time that is very far along in a file, we can just jump to 50.tmp.
We also store a vector of doubles into memory, where the ith element contains the first time scene in i.tmp. In this method, when we are search for a specific time to which we are rewinding, we can determine which file contains the desired information in logarithmic time.
Parsing
The file reader class contains a function called parse, which takes no arguments. It will grab a line using a helper function called getLine, call the function parse, and process to schedule the action or transmission. When a user wants to add file format support for a particular file, he/she would need to create a new class with a constructor that accepts a vizManager pointer and a file name. The user must also define a parse function that returns a standard class (infoLine) pointer and accepts a string line (a single line from the parsed file).
This is a very effective class structure because it limits the dependency of the process of parsing to only the exact details of parsing a single line. The other processes associated with reading a file has been automated. So, the user need to know very little about the actual implementation of the file reader class structure in order to make use of it.
The required infoLine * return type makes this feature difficult to misuse because the returned object must be of type infoLine, and so we can limit what is returned by the definition of the infoLine class (and its children – mobilityLine and transmissionLine).
Conclusions and Future Directions
After the successful completion of the project, there are many thoughts that came to mind. There were a couple of problems that came about while working on iNSpect. However, working with it provided experience in GTK, NS-2, Nam, and Viz. It also provided experience working with actual clients that have requirements that need to be met.
There were some problems that came up through the life of the project. One of them was getting it to run remotely. So that you would not have to be in the alamode lab all the time. We learned that we could use VNC (Virtual Network Computing) to connect remotely to a computer in the alamode lab such as “pumpkin” and “blueberry.” We also learned how to setup the environment required by iNSpect in windows by installing the correct libraries into the correct locations. We had to install ATK (Accessibility Toolkit), Cairo, and GTK libraries along with a few others in order to compile successfully and run the program after it has been compiled.
Another problem was communication. At first everyone can be easily contacted by email or instant messenger and have their response within 12 hours. However, as days passed during the project, it was harder to get a hold of someone, in some instances maybe within 72 hours. There is also the fact that sometimes we misinterpret what the other is saying. For example, a team meeting may have been held in the alamode lab but instead it was in the Green Center due to a need for UML software.
There was an additional problem related to the integration of the project. The requirements that Toilers had provided us were divided among ourselves. When tested independently of the project, they worked without any bugs, quirks, or problems. However, when we put them all together, it took a while to get through the compilation errors, and after we got passed that, a segmentation fault. This segmentation fault was the root of where the time has been spent the last few days of the project. It is amazing how everything could go well in the beginning and get hectic at the end near crunch time.
As far as meeting the requirements go, we have replaced eventBuilder with FileReader which cuts down on the number of responsibilities that FileReader is responsible for compared to eventBuilder. It is more reliable as well as allowing the program to be easier maintained as well as adding additional features. In addition to the new class structure, Nam file format support as well as Viz 2 file format support are now supported. A Node Color tab was added to support on-the-fly node color changing which no longer requires the user to restart the program. The ability change node colors on-the-fly is a welcome feature. The user no longer needs to close the application, modify the configuration file and reload the application.
With the file reader class in place of eventBuilder, it should eliminate most of the bugs related to parsing the files, rewinding, and fast forwarding. With a new class structure in place, it should be easier for the next team or person that works on it to add additional features to the existing program. We also learned that keeping things as simple as possible can make all the difference in the world. It makes it easier to debug. It also allows understanding the implementation easier. In addition, making them as simple as possible allows for greater maintainability of the code.
Overall, we believe that the field session project with Toilers Research Group has given us additional knowledge on network simulators along with GTK along with a business environment work experience. There were a couple of problems that came about while working on iNSpect. However, working with it provided experience in GTK, NS-2, Nam, and Viz. It also provided experience working with actual clients that have requirements that need to be met. It was a good experience overall.
Glossary
Definitions, Acronyms, and Abbreviations
· iNSpect: interactive NS-2 protocol and environment confirmation tool
· Nam: network animator
· NS-2: Network Simulator (Version 2)
· Viz: visualization
· GTK: GIMP Toolkit (multi-platform toolkit for creating graphical user interfaces)
· GIMP: GNU Image Manipulation Program (freely distributed piece of software for such tasks as photo retouching, image composition and image-authoring)
· GNU: (acronym) GNU is Not Unix (an operating system that is not Unix)
· OpenGL: Open Graphics Library (a 2D and 3D graphics API)
· API: Application Program Interface
· WSN: Wireless Sensor Networks
· ATK: Accessibility Toolkit
· cairo: a 2D graphics library with support for multiple output devices
· gettext: GNU internationalization library
References
1. “Toilers,” http://toilers.mines.edu/Public/WebHome. Accessed June 16, 2006.
2. “iNSpect Demos,” http://toilers.mines.edu/Public/NsInspect. Accessed June 16, 2006.
3. S. Kurkowski, T. Camp, N. Mushell, M. Colagrosso, “A Visualization and Analysis Tool for NS-2 Wireless Simulations: iNSpect,” May 2005.
4. “GTK+ - The GIMP Toolkit,” http://www.gtk.org. Accessed June 16, 2006.
Appendix
General information on file formats
NS-2
Network Simulator Version 2
Mobility
· M
0.00000
32
 (355.02, 147.83, 0.00),

(275.56, 256.68),
0.00
flag
time

node
current (x, y, z)

new (x, y)

speed
Send
· s
-t
0.000075001
-Hs
0
-Hd
-1
flag
flag
time

flag
node
flag
destination node

-Ni
0
ignored

-Nx
234.96

-Ny
66.05

-Nz
0.00

Ne
-1.000000

flag
x-position
flag
y-position
flag
z-position
flag
energy

-Nl
MAC
flag
network trace level

-Nw --- -Ma 0 -Md ffffffff -Ms 0 -Mt 800 -Is 0.254 -Id -1.254 -It LAR -Il 82 -If 0
ignored

-Ii
1
flag
packet id

-Iv 32 LAR [R F] src[0 (234.961,66.054)] to[49 (0.000,0.000) s=0.000 t=0.000000] h=1 last[-1 (234.961,66.054)] data=0 t=0.000000
ignored
Receive
· r
-t
0.000403059
Hs
17
-Hd
-1
flag
flag
time

flag
node
flag
destination node

-Ni
17
ignored

-Nx
252.40

-Ny
68.24

-Nz
0.00

-Ne
-1.000000
flag
x-position
flag
y-position
flag
z-position
flag
energy

-Nl
MAC
flag
network trace level

-Nw --- -Ma 0 -Md ffffffff -Ms 0 -Mt 800 -Is 0.254 -Id -1.254 -It LAR -Il 30 -If 0
ignored

-Ii
1
flag
packet id

-Iv 32 LAR [R F] src[0 (234.961,66.054)] to[49 (0.000,0.000) s=0.000 t=0.000000] h=1 last[-1 (234.961,66.054)] data=0 t=0.000000
ignored
Nam
Network Animator
#: Comment
n: node
· -t
<time>

time
· -s
<int>

node id
· -x
<double>
x location
· -y
<double>
y location
· -u
<string>
x velocity
· -U
<string>
x velocity
· -v
<string>
y velocity
· -T
<double>
node stop time
+: enqueue packet || -: dequeue packet || h: hop || r: receive
· -t
<time>

time
· -s
<int>

source id
· -d
<int>

destination id
· -p
<string>
packet type
· -e
<int>

extent
· -a
<int>

packet color attribute id
· -i
<int>

id
· -k
<string>
packet type
W: Wireless range
· -t
<time>

time
· -x
<int>

x
· -y
<int>

y
A: Hierarchical address space configuration (initialization only)
· -t
<time>

time
· -n
<int>

hierarchy
· -p
<int>

port shift
· -o
<hex>

port mask
· -c
<int>

multicast shift
· -a
<int>

multicast mask
· -h
<int>

hierarchy
· -m
<int>

node shift
· -s
<int>

node mask
Viz
vizTrace
Mobility
Current Implementation
Initial Position
· $node_(0) set X_ 234.961083248912
· $node_(0) set Y_ 66.053748521329
· $node_(0) set Z_ 0.000000000000
· $ns_ at 0.000000000000 "$node_(0) setdest 187.104043824181 49.279433698058 0.000000000000"
Movement
· $ns_ at 19.418426742506 "$node_(0) setdest 321.822538562968 195.856187956341 30.000000000000"
Future Implementation
Initial Position
· 19
0.02345
move
init
132.459
423.888
12.3
node
time

move
init
x-coordinate
y-coordinate
velocity
Movement
· 19
0.02345
move
dest
132.459
423.888
12.3
node
time

move
dest
x-coordinate
y-coordinate
velocity
Send/Receive
· 19 0.00729513 sending to 30 originator 39
· 30 0.0404072 received from 19 destination 39 from (298.112,211.442) to (290.389,136.896)
· 18 0.0835157 sending to 39 forwarding 21
· 39 0.137975 received from 18 destination 21 from (47.4503,69.1484) to (47.4938,157.496)
Toilers Research Group

06

iNSpect

Universal File Reader

Eric Chiu, Dan Lecocq, Christian Ward-Garrison

