

 ZACHERY TILLOTSON + NATHAN MCNEEL + NICHOLAS GEANETTA

SUMMER FIELD SESSION FINAL REPORT • CSM • JUNE 21, 2006

ZACHERY TILLOTSON + NATHAN MCNEEL + NICHOLAS GEANETTA • CSM

 M E D T R O N I C
 p o l a r i s s i m u l a t o r

a b s t r a c t

Medtronic Navigation wishes to improve their application testing process. Many
of their applications use a localization system, the NDI Polaris camera, and being
able to simulate this hardware would improve both the speed and precision of
tests, not to mention introduce a way to automate the process. The current testing

of these programs requires the camera to be setup and a person to go through an
extensive series of maneuvers with different tools. Medtronic wishes to improve
this method.

Our program will be limited in scope. We will create an application that is able to

simulate one event; this can be built upon in the future to create larger, more com-
plex simulations.

The application works by simulating the responses the Polaris would return. This
will be used to simulate the atomic testing sequence, which is a user moving a

tool to a certain point in reference to a static reference arc. This will be done in
three parts: the recording of a log file, the parsing of this file into more compact,
focused files, and finally the playing back of the recorded event.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 1

 M E D T R O N I C
 p o l a r i s s i m u l a t o r

Table of Contents

Introduction__________________________________3

Requirements_________________________________4

 Overview________________________4

 Recording________________________5

 Saving__________________________5

 Playback________________________6

 Implementation__________________6

Design____________________________________7

 Introduction____________________7

 Recording_____________________8

 Saving________________________9

 Playback_____________________10

 Summary____________________10

Implementation____________________________11

Future Direction___________________________13

Conclusions______________________________13

Appendix________________________________14

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 2

Introduction

Medtronic is a world leader in medical technology providing lifelong solutions for

people with chronic disease. They offer products, therapies and services that en-

hance or extend the lives of millions of people. Each year, 5 million patients bene-

fit from Medtronic's technology, used to treat conditions such as diabetes, heart

disease, neurological disorders, and vascular illnesses.

Medtronic Navigation is a subsidiary of Medtronic Inc. Medtronic Navigation is

the market leader in the field of computer-assisted surgery (CAS); they create

software for use with localization cameras such as NDI’s Polaris. In recent years,

the pace of innovation in CAS has quickened considerably. In response, Med-

tronic Navigation has developed and delivered new and updated hardware and

software solutions to assist with varied surgeries including total joint replace-

ments, minimally invasive spinal surgery, cranial tumor resection, biopsies, func-

tional neurosurgery and Functional Endoscopic Sinus Surgery.

Medtronic Navigation has two releases of their approximately twenty applications

each year. Each of these forty releases includes a ten day testing session. This is

four hundred man days each year, and at approximately $100 total cost per hour

of testing, this comes to $320,000 per year for testing currently. Obviously, this is

not a small issue and improving the current process can have a large impact.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 3

Requirements
 O v e r v i e w

The goal of this project is to improve the testing process for code that depends on

the Polaris localization hardware by mimicking the manual testing with simula-

tion software. Our program is able to copy the manual tests by recording the data

sent through the serial port from Polaris, saving it in an appropriate database, and

being able to play it back again.

Data will be recorded by al-

lowing the user to start a re-

cording session, do a series of

events with the camera, and

then save the event. The play-

back aspect of this project will

be script driven and able to

initialize the camera, load tool

interface files, and run events

as described in previous re-

cordings.

This is a small part of a larger

project, and as such we have

designed our program in such

a way as to have it easily continued and expanded upon. In this project we see

our scope as emphasized on the recording and saving of events aspects, and have

implemented the playback functionality as time allowed.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 4

Requirements
 R e c o r d i n g

The recording aspect of our program will be simple. The user must be able to

have the program initialize the camera, for any number of wired tools, and record
an event. The recording should be able to be paused, resumed, and started over.
The recording must create a log file which can be used to create another file(s) for
playing back.

Ideally, the recording would be done by siphoning actual data off the serial con-
nection between Medtronic’s application and the camera, instead of an independ-
ent program to do the recording. However, this might take more time than the
project allows and as such will be done as time allows.

Requirements
 S a v i n g

The Polaris camera can accept and reply to approximately ten commands each
second. With each command being more than ten lines, this is one hundred lines

of data each second. For any event more than a couple seconds long the event log
will be very large, and as such compression of the data can be important.

The log should be reduced in size by as much as possible. Eliminating unneces-
sary command sequences, command repetitions, and trivial elements of responses

should be considered.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 5

Requirements
 P l a y b a c k

This aspect of the program could be the most complicated. Implementing a way
of setting up complicated test scripts, which can include several tools and many

different events for each tool, should be researched. This simulator has the po-
tential to completely change the way Medtronic tests their application, but a weak
customization tool for the test scenarios could severely limit its application for
real use.

That said, working within the limited timeframe of this project, we will attempt to
have just a simple playback aspect completed. This should be able to recreate one
event scenario, this includes initializing the camera, setting up the tools, and
simulating the localization responses.

Requirements
 Implementation

Medtronic Navigation’s applications (and most of their computers that would be
testing them) work with Linux. However, they are willing to allow us to work in
Windows, as long as the code we write is portable enough so as to allow the Win-
dows only parts (e.g. MFC related) to be replaced with their Linux variety.

Medtronic Navigation works with C++, and as we feel comfortable in that lan-
guage, we will work with it for this project.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 6

D e s i g n
 Introduction

The three main aspects of our design are recording events, saving these events

efficiently, and playing them back in imitation of a camera. Each of these aspects

has been designed to work independently, as a base to be built upon, and this

modularization allows for each aspect to be developed and expanded without a

total rework of the system.

The recording aspect will create a log file of the commands sent to the Polaris

system and the responses returned. This log will be parsed by the saving aspect,

reducing the

size of the file

by eliminating

u n n e c e s s a r y

c o m p o n e n t s .

This reduced log

of the event can

then be played

back by the final

aspect of the

program, simu-

lating the way

the Polaris sys-

tem returns responses after receiving commands. As long as these log files don’t

change, each part of the project can be expanded without effecting the overall

project.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 7

D e s i g n
 R e c o r d i n g

The recorder is most concerned with communicating with the Polaris camera.
This is done over a serial connection; we have used a legacy serial port communi-
cation class from NDI instead of designing our own. This class is Windows spe-
cific, and should be replaced if the program is to be used on another platform.

The main flow for setting up the camera is
1. Camera initialization

a. Serial Break – Hardware command, camera resets when this is
done. When this command completes it is in Setup mode

b. INIT – Initializes the camera, required for many following com-

mands
c. ... – Many custodial calls (i.e. VER, SSTAT). Used for creating a

descriptive log file and changing camera settings
2. Tool port initialization

a. PSTAT – can be sent repeatedly, as in the NDI test application. This

is used to determine which ports have tools in them
b. PINIT, PENA for each port with a tool in it – This initializes and

enables each port for tracking.
c. TSTART – This command moves the camera into tracking mode.

3. Event localization

a. GX – sent nonstop until TSTOP. Returns data about tools location
and sensor visibility.

b. TSTOP – Used to break out of tracking mode and reenter setup
mode.

The event localization loop is the longest part of the process; it is where the cam-
era records the position of the tools. The program will save to a log each com-
mand and response, which is parsed during saving into files useable for playback.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 8

D e s i g n
 S a v i n g

The log saved by the recorder contains all of the commands and responses the

camera was sent and returned. Many of these are trivial (e.g. VER) and can be

ignored, others are sent many times in some cases (e.g. PSTAT) and only the re-

sponse from one is needed for playback purposes, and the most prevalent com-

mand by far, GX, returns a response for each port no matter how many ports are

active. All of these can be ignored for purposes of playback, and can be cut out.

The initialization sequence is application specific and might need to be saved, but

should not be needed for each individual event. Therefore, a master initialization

sequence should be recorded and used for all playback scenarios.

The tool initialization sequence is specific to the tools used in the event. The re-

sponse for each tool should be saved, but no order need be kept. A tool in port 1

when recorded could be played back in port 2 without problem.

The localization command, GX, returns the same number of lines of data every

time, no matter how many tools are set up. This means that for events with few

number of tools many lines of this command will return “UNOCCUPIED”, and

ignored. These responses can be generated at need by the playback loop and an

be cut out.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 9

D e s i g n
 P l a y b a c k

Playback’s current state is more rudimentary when compared to its ideal final ver-

sion than the other two aspects. The current system is to simply choose a camera

setup log, tool setup log, and event log, and to run through them from top to bot-

tom. These logs can not be changed after playback is started, and each log’s re-

sponses will be looped until “special commands” are sent to go to the next log.

These commands indicate the camera is changing its state, from camera initializa-

tion to port initialization, from port to event, and from event back to port.

D e s i g n
 S u m m a r y

The program is split into three aspects : the recorder, saver, and playback. The

recorder saves a log of commands sent to the camera and responses received. The

saver parses this log file and creates three more condense files, one of which can

be ignored/deleted for the most part. Playback will loop through one event log for

the current implementation.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 10

Implementation

The project code has been written exclusively in C++. Medtronic put this forth as

the most helpful option from their point of view, and as everyone in the group has

had experience with this language we felt it would work well. This turned out to

be a good decision, as most of the example code we found for serial communica-

tion was written in C++.

One program we found was an open source Polaris test program NDI wrote as a

test / example application, which they graciously provided it for our use. In it was

included a Comm32 class which took care of serial port communication. We have

used this class for our own serial communication. It is Windows only, and so if

our program is to be compiled for another system this class needs to be replaced

with one compatible with that other system.

Medtronic put forth Linux as their operating system of choice. This presented a

problem for us, as access to Linux machines would be limited. However, Med-

tronic was amiable to us working with Windows instead, as long as our code was

modularized enough so as to be easily ported to Linux. The item this applies to in

our program is the serial communication class, Comm32.

We chose to write the graphical user interface (GUI) in Qt (pronounced as

“cute”). The Qt toolkit is a cross platform graphical widget toolkit for the devel-

opment of GUI computer programs. It uses a signal / slot interface which we used

extensively to power our program. Qt works well with C++ and is easily compli-

able on both Windows and Linux systems.

As for the program itself, our implementation succeeded in recording an event log

from the camera and in simulating the event back to a third party test program.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 11

As the project progressed the

main focus of the project drifted

away from plain recording and

saving to recreation of an atomic

test scenario. This meant that

while recording was completed as originally planned, we spent more time on

playback than on saving. The final result is a recorder, playback, but no saving.

This is the most trivial of the three aspects though, and should not be as hard to

pickup.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 12

Future Direction

If we had more time we would like to expand on all aspects of the program. The

recorder could be converted from a program which is used to directly create a log

from the camera to a more passive approach, simply saving the commands and

responses between the camera and Medtronic’s application instead of being the

application. The saver could be converted from a simple file parser to a full data-

base controller. Each event could be saved, searched, sorted, split, and combined.

 Playback could be converted from one event to a play list, script driven, and

command line driven. This would make it very powerful for automated regression

tests, something currently not feasible for Medtronic.

C o n c l u s i o n s

We have completed the implementation of a test scenario for an atomic test event.
This means that our program is able to record and playback one event; an event
that would be combined with other, similar, events to create larger, more complex
test scenarios. This program should be considered the first step to automating the
testing process, as a base to expand to create a system for speeding, expanding,

and perhaps replacing the current manual testing practices.

We were able to meet the basic needs of automated testing. We recreated an
atomic testing scenario, something which is a base on which the rest of a more
powerful system can be built.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 13

A p p e n d i x
 R e f e r e n c e s

•Virtual serial port http://www.virtual-serial-port.com
•Polaris Users Manual
•Qt http://www.trolltech.com/
•NDI (Northern Digital Inc.) http://www.ndigital.com/polaris.php
 Comm32 Serial Communication Class from WinPolarisSample
•Gantt http://www.ganttchart.com/
•Medtronic.com

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 14

A p p e n d i x
 List of Abbreviations

CRC::Cyclic Redundancy Check Used to ensure correct data returned from cam-
era
Qt::Not actually abbreviation, pronounced as “cute” Used to create GUI, imple-

ments a signal and slot mechanism
GUI::Graphical User Interface How the user interacts with the software
NDI::Northern Digital Inc. Maker of the Polaris camera, the camera Medtronic
uses for their localization software
CAS::Computer Assisted Surgery Type of software Medtronic Navigation pro-

duces, uses Polaris (and other camera systems) to assist surgeons in surgery by
showing the location of tools relative to the patient

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 15

A p p e n d i x
 List of Commands & Responses

Serial Break Hardware command, camera resets when this is detected and
returns “RESET” if all went well. Camera enters setup mode
 INIT Camera enters initialized mode
 PSTAT Returns status of each port. If a port has been initialized it should return

data about the tool.
 PINIT Initializes a port, reads tool data into camera
 PENA Enables a port to be tracked
 TSTART Camera enters tracking mode
 TSTOP Camera exits tracking mode

 GX Returns position and transform data from each port. If a tool can not be seen
it returns “EMPTY” for that port.

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 16

A p p e n d i x
 Gantt timeline

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 17

A p p e n d i x
 Class Structure

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 18

A p p e n d i x
 Data Flow Diagram

Zachery Tillotson + Nathan McNeel + Nicholas Geanetta • CSM
 19

C A M E R A T I U
R e c o r d e r

A p p l i c a t i o n

P l a y b a c k

A p p l i c a t i o n

M e d t r o n i c

A p p l i c a t i o n

P C

P C

T o o l s

L o g

F i l e s

R S

2 3 2

R S

2 3 2

