
 

 

 

 

 

 

 

 

 

 

CSM #4 Geophysics Interactive Graphical Display 

Summer Field Session 2006 

 

 

 

Christine Brady 

Adam McCormick 

Zachary Pember 

Danielle Schulte 

 

 

 

 

 

 

 

 

 

Client: Dave Hale 

Advisor: Cyndi Rader 

 

 

 



Executive Summary: 

 

The primary goal of this project was to expand upon the existing Mines Java Toolkit 

(JTK) created within the Geophysics department at the Colorado School of Mines This toolkit is 

used to program visuals for scientific applications. Current applications do not provide good 

interactive models, and, for this reason, Mines is developing tools that will assist in development 

of better applications. Our task was to design and implement a package of classes as an extension 

to the Mines JTK that would create and display triangulated surfaces in 3D, referred to as the 

JTS (Java Triangulated Surface).  

 

Requirements of the project included restrictions on the license under which the code 

must be written and the language of the code. The use of the included OpenGL wrappers was 

also required. To complete the project we needed to research the most effective means of 

implementing a bounding sphere hierarchy, creating a framework for interacting with 3D 

surfaces using a 2D mouse, and developing algorithms to produce relevant data such as triangle 

normal vectors, spatial medians, and average vertex normal vectors. This research emphasized 

accuracy and efficiency. 

 

The final design included code written from scratch as well as code copied from within 

the Mines JTK, in order to ensure license compliance. The code reliably generates surfaces from 

triangle soup, surface functions, and standard triangulated surfaces such as the Stanford bunny. 

Test classes included with the code demonstrate this functionality using various setting to 

determine color and material states, as well as a logical increase in complexity in the use of the 

JTS code. Aspects of the code such as the maximum number of triangles were analyzed for 

efficiency and adjusted according to our results. All problems with rendering were solved as we 

developed increasingly sophisticated test code. 

 

The requirements of the project as we understood them have been fulfilled. We have 

provided code that extends the Mines JTK into the rendering and manipulation of triangulated 

surfaces. Future extensions to this project lie in three main areas: interface extension, extended 

format support, and data manipulation. This package should add all required functionality to the 

Mines JTK and set a robust foundation for increasing utility in the future. 

 

 



Abstract: 

 

The Geophysics department at the Colorado School of Mines is developing a Java toolkit 

that can be used in programming scientific visual applications. Specifically, it provides graphics 

tools that allow display and interactive manipulation of 3D surfaces. This is important to 

scientific applications, particularly in the field of geophysics, because the ability to interact with 

surfaces and manipulate joints and faults can greatly increase understanding of a material, such 

as the Earth's subsurface. Current applications do not provide good interactive models, and, for 

this reason, Mines is developing tools that will assist in development of better applications.  

 

Our task was to design and implement classes and methods for creating and displaying 

3D triangulated surfaces. We used graphics tools from the OpenGL library that have been 

wrapped in Java, along with advanced data structures such as scene graphs. The problems we 

have addressed include: determining the most effective means of implementing a bounding 

sphere hierarchy, implementing a means of interacting with 3D surfaces using a 2D mouse, 

creating of data types to facilitate rendering, and designing algorithms to produce relevant data 

such as triangle normal vectors, spatial medians, and average vertex normal vectors. 



Project Introduction: 

 

The goal of this project was the creation of an architecture for storing, organizing, and 

rendering triangles within the Mines Java Toolkit (JTK). This architecture implements the 

OpenGL wrappers written in Java by Dave Hale and works with the Mines JTK scene graph 

language (SGL). While this architecture was not specific to rendering surfaces, such is the main 

reason behind this project. Its main use will be the display of data collected from subsurface 

analysis. However, our client tasked us w with making this implementation as general as possible. 

To this end, we added much extra functionality above and beyond our general mandate. 

 

The first element of this project was to learn the Mines JTK and how to integrate with it. 

The Mines JTK is a package containing Java classes designed to assist in the development of 

scientific visual applications. Specifically, it provides graphics tools that allow the display and 

interactive manipulation of 3D surfaces and objects. This is important to scientific applications, 

particularly in the field of geophysics. The ability to interact with surfaces and manipulate joints 

and faults can greatly increase understanding of the data involved, such as that collected about 

the Earth's subsurface. 

 

The goal of our project was to add triangle rendering functionality to the Mines JTK. This 

was accomplished by rendering what was termed “triangle soup” by our client. More specifically, 

our application takes vertices stored in an array of float values and renders the triangles using the 

OpenGL wrapper in the Mines JTK. An array of integers could also be specified to indicate 

which of the vertices would be used in each triangle, thus making triangulated surfaces easier to 

pass in. 

 

To work with the Mines JTK SGL, each group of triangles is divided into manageably-

sized subsets. This allows for easier tracing of picking operations but slows the render, so a 

balance had to be found. We were also tasked with producing a means of using such famous 

triangulated surfaces as the Stanford Bunny as test cases for our triangle groups. Our classes 

integrate with the Node-Group mentality and structure set forth by the SGL framework. It is 

designed to work transparently within this framework as if our implementation was not dividing 

the triangles into subgroups at all.  

 



Requirements and Specifications - Research and Development: 

 

For this project, we learned to use both the Mines JTK framework and Dave Hale’s 

OpenGL wrapper software. We studied and maintained the current build configuration for the 

JTK so that we could build a new branch of it and produce the Java Triangulated Surface (JTS) 

package. The primary class within this package was to be the TriangleGroup class. This class 

was to be created with a stream (more literally an array) of float values representing Cartesian 

triplets and, optionally, another array of integer triplets representing the vertices used to create 

each triangle in the group. This project will also produce a set of utilities which will organize the 

TriangleGroup and organize it into a bounding volume hierarchy. 

 

Our task was to determine the most advantageous implementation of this hierarchy and 

this class in order to optimize picking and culling of the TriangleGroup. Our research included 

triangulated surfaces in general, such as how they are stored and how they may be displayed with 

OpenGL. We researched how normal vectors are used in displaying and shading algorithms. In 

this, we determined both a means of calculating the normal vectors at each of the triangles’ 

vertices and an architecture for storing both the calculated normal vectors and the vertex 

locations. We also determined how best to display the group and a means of interfacing with this 

display. 

 

 

Requirements and Specifications - Design and Implementation: 

 

We were tasked with writing classes to render triangles from an array of vertex locations 

and determine optimal partition size for dividing the triangles into bounding volumes. Optimal 

partitioning, in this context, was defined as bounding volume partitions that minimize the 

average ray tracing and rendering time. The goal of our algorithms was to accomplish this using 

a top down approach that begins by dividing triangles into approximately even groups, and 

continues by subdividing the groups into smaller groups. This continues until all bottom level 

groups contain an approximately equal number of triangles below a predefined maximum 

number. The final groups are then placed into bounding spheres to allow for quick ray tracing. 

 

Our deliverables were to be coded completely in Java and had to be made compliant with 

the Common Public License (CPL). Thus, many “Free” pieces of readily available code could 

not be used. Most notably, no code under the GNU Public License (GPL) or any of its 

counterparts could be considered. This meant that the vast majority of our code and algorithms 

had to be written from scratch. The implementation also required us to borrow heavily from the 

existing JTK framework so as to minimize redundant functionality or usage conflicts. 

 

We used the many examples set forth in the scene graph section of the Mines JTK and 

our knowledge of Java and graphics to design the TriangleGroup class, an algorithm to create a 

bounding volume hierarchy, an architecture for storing and retrieving vertices from the hierarchy, 

and utilities to aid in creating TriangleGroups. The hierarchy was to be composed of nested 

spheres.  This way the hierarchy may be traversed recursively to find any triangles along a given 

path, as when tracing a picking vector, or in a given volume, as when choosing what triangles are 

to be rendered. All algorithms were to run in linear time and to be as efficient as possible. 



Design - Architecture: 

 

This project required the design of several algorithms in order to fulfill the functional 

requirements. The algorithms include calculating the vertex normal vectors and controlling the 

division of the triangles. 

 

The first significant algorithm is the computation of vertex normal vectors. This is an 

important aspect of rendering triangles as it determines how light is reflected. In order to 

calculate vertex normal vectors, the normal vectors of the triangles must first be calculated. The 

normal vectors of the triangles are calculated by forming two vectors from the three vertices of a 

triangle and then taking the cross- product of the two vectors. The vertex normal is an average, 

weighted by area, of the normal vectors of each triangle sharing the given vertex. 

 

The division algorithm splits the group of triangles in half and is used recursively until 

every group has less then a finite maximum number of triangles. The purpose is to isolate small 

groups of triangles that can be easily rendered and searched through. In order to select specific 

triangles, the SGL framework must sort through every triangle within range. The algorithm 

provides limits so the framework only sorts through a sub group of triangles. The division is 

done in three dimensions according to the median of the triangle centroids. First, the extrema in 

each dimension are recorded. The range of each dimension is then calculated. The dimension 

with the greatest range is the one that is divided. This ensures that divisions occur where they 

will be most useful. Then, the coordinates of the centroids in the given dimension are sorted into 

numerical order so that the median can be found. The triangles are divided along this median. 

 



Implementation - Architecture: 

 

The algorithms described involved implementing a series of methods. The calculation of 

normal vectors is implemented at the top level and called as part of the TriangleGroup 

constructor before the vertex values are passed into the TGNodeGroup to be divided. Division of 

the triangles takes place in the divide method and uses several methods including findExtrema, 

quickPartialSort, divide, and getCentroids. The divide method is called as part of the 

TGNodeGroup Constructor. 

 

The calculation of the normal vectors takes place in the calculateNormals method. First, 

two vectors are formed by subtracting the values of two vertices from a shared third vertex. The 

cross-product function is copied from the Vector3 class within the Mines JTK and used to 

mathematically find the triangle normal vector. It was a non-functional requirement that we copy 

the methods we needed from Vector3 instead of simply calling the function. For each vertex, the 

method compares that vertex to the vertices of all the triangles and counts how many triangles 

share that vertex. Keeping a count of how many normal values are in the array allows a 

cumulative average to be calculated. As new triangles that share a given vertex are found, the 

existing normal at that vertex is multiplied by the current count, then the normal of the new 

triangle is added to form the sum of all such triangles, and then that sum is divided by the newly 

incremented count, creating a running average. This average is already weighted by area because 

the normal vectors have not been normalized and are proportional to the area of the triangles. 

 

Once the normal vectors are calculated, the position coordinates and the normal vectors 

are passed into the TGNodeGroup constructor where the division of triangles into subgroups 

occurs. The constructor first calls divide which then calls quickPartialSort to find the median. 

The quickPartialSort method then calls several other methods. The first method, findExtrema, 

locates and records the minimum and maximum values of the x, y, and z coordinates of every 

vertex. This method is called within quickPartialSort in order to calculate the necessary ranges. 

Whichever dimension has the greatest range is the one by which the centroids are ordered 

numerically.  

 

The method getCentroids is also called within quickPartialSort in order to obtain an array 

of values representing centroids from an existing array of vertices and an index. When the 

centroids are sorted, the median is pulled out. The method divide calls quickPartialSort and then 

divides the triangles. While each group still contains more then the maximum number of 

triangles, divide creates TGNodeGroups and thus, divide is recursively called. When the number 

of triangles in the groups is below the maximum number, divide creates TGNodes, which can be 

interpreted by the scene graph framework and can be rendered. 

 



Design - Visualization: 

 

A main requirement of this project was that functionality be included for displaying 

triangulated surfaces. To provide this, triangle rendering methods are included. The rendering 

functions use the Mines JTK OpenGL wrappers so that they are both fast and consistent with 

other rendering functions in the Mines JTK. 

 

The included functionality accomplishes several tasks. First, the methods render a 

triangulated surface from an array of coordinates. The rendering methods use the triangle 

coordinates and the bounding sphere computed in TriangleGroup to produce a display of the 

surface. Additionally, the rendering functions use the vertex normal vectors to enable lighting 

and to allow for surface coloring input. Finally, the rendering methods enable the user to zoom 

and select objects within the display.  

 

To test the rendering functionality, TGTest classes are designed to create variously sized 

and shaped surfaces that utilize different aspects of the TriangleGroup class. The first one 

produces a large pattern surface that confirms rendering is functional and quick. The second 

class produces a surface from a Math sine function that demonstrates the lighting and coloring 

functionality. The rest of the TGTest classes create different shapes, such as a bunny and 

dolphins, and then try to merge them without creating a selection error. 

 



Implementation - Visualization: 

 

At the lowest level of our implementation, the TGNode, all of the functionality to render 

the triangles is implemented. Whenever a new TGNode is created, it calls a series of OpenGL 

functions to prepare itself for rendering; these are called using the method setupDraw. The 

method setupDraw sets up all the graphics information needed by the draw method. It calls 

makeArrays, creates the buffers, and sets the material (either to the default or a specific state that 

has been passed in). The defaultMaterial is a shiny surface that has an ambient component, a 

diffuse component, and a white specular component (much like a shiny plastic). 

 

The method makeArrays creates the float arrays for the normal vectors, vertices, and 

colors. Since the OpenGL functions require an ordered array of vertices, this method creates an 

array from the given vertices and indices. It also calls the getNormal method to create the array 

of normal vectors needed to render properly. For colors, the default color is a rainbow mixture 

dependent on the x, y, and z coordinates but you can also pass in a ColorFunction to set the 

colors. The interface ColorFunction allows the user to set a method to define the color of the 

surface. The required method takes in an xyz-coordinate and returns a color in the RGB format. 

 

The method draw uses OpenGL to render the triangles in each TGNode. OpenGL 

requires the use of float buffers to render triangles, so vertexBuffer, normalBuffer, and 

colorBuffer are created in the setupDraw method to pass in the vertices, normal vectors, and 

color data. Using these buffers, draw then renders the array of triangles in the TGNode. Every 

time a change (rotation, translation, zoom, etc...) is made to the image or to the display screen, 

draw is called. Whenever an object is selected or unselected, the method selectedChanged marks 

the current image for redrawing using the dirtyDraw method. If something has been selected, 

draw then sets the width of the white highlight using glPolygonOffset and draws the outline of 

the selected triangles on top of the existing image. Since the rendering must be done at this level 

and the TriangleGroup must be dealt with as a whole, every TGNode must render as if it were 

selected whenever the Triangle group to which it belongs is selected. 

 

Selection is done by the SGL Framework using the pick method. pick uses a 2D mouse to 

select a 3D object. It does this by drawing a line from the near cutting plane to the far cutting 

plane and testing to see which of the bounding spheres it intersects. It will then test within the 

bounding sphere to see if the line intersects with any of the triangles. If an intersection is found, 

the TriangleGroup becomes selected and this changes the execution of the draw method 

accordingly. 

 



Project Progression: 

 

Initially, the project began with a few setup delays due to the way the graphics cards 

worked with the OpenGL and with some of the environment paths. After our workspace was 

prepared, we spent approximately 2 weeks developing theory and trying to familiarize ourselves 

with the structure of the Mines JTK. Once we began implementation, the process took a derived 

form of extreme programming with paired programming, frequent builds, and design refactoring 

whenever the code we had written either didn’t work right or was too inefficient. The last week 

of coding primarily focused on creating test programs and debugging. 

 

One type of problem we encountered included selection errors that either crashed the 

program when a pick was made, or selected only a small group of triangles rather than the entire 

object. Additionally, we had problems with extra random triangles being rendered, which we 

termed “The Black Plague,” because it rendered odd black triangles that seemed to erase large 

parts of the surfaces, and “Bunny Cancer,” because it spawned randomly colored, positioned, 

and oriented triangles in addition to the models (Pictured Below). Finally, with some help from 

our client and a bit of debugging, our project was completed.  

 

 

 
 



Conclusions and Future Directions: 

 

As the project unfolded, we soon found that much of the design had to be altered as the 

implementation proved many changes were advantageous and many design elements were 

impossible. This demonstrated the need for frequent iteration and constant integration. It also 

forced us to work collaboratively on many of the more difficult problems and allowed us to bond 

as a team. This endeavor has also shown the Mines JTK to be a robust alternative to Java 3D. 

 

Within the scope of this project, we have produced an intuitive and flexible solution for 

creating and using triangulated surfaces. Our solution allows for use with unconnected triangles 

as well as triangulated surfaces and has functionality built in to produce such surfaces from both 

functions and properly formatted files. We have included as much optional functionality as our 

scope has allowed, even going so far as to produce interfaces and scripts for user-defined 

functions and the import of models from VRML. We have produced many test classes to 

demonstrate the functionality of our solution which should, collectively, showcase the use of our 

TriangleGroup and TriangleUtils classes, and our SurfaceFunction and ColorFunction interfaces. 

These test classes should also demonstrate a logical progression of complexity for the use of 

TriangleGroup.  

 

Future extensions to this project lie in three main areas: interface extension, extended 

format support, and data manipulation. While we have produced Test classes which implement a 

very functional interface, TriangleGroup itself may only be interacted with at a superficial level; 

the view may be changed but not the actual model. There has been some talk between ourselves 

and our client about the functionality to drag and scale the model as well as alter the camera’s 

viewpoint. Currently, only a very simplistic file format is supported and the only functionality to 

translate other formats is a Perl script used separately from the rest of the program. With some 

further work, such popular formats as PLY, in which the Stanford Bunny is distributed, could be 

accommodated. Functionality could also be added to manipulate data and save the manipulated 

data to a file. Currently, the appearance of the data (ColorFunction’s and transforms) may be 

altered easily, but the data itself is not changed so that changes are not seen on reload. Further 

functionality would allow data to be manipulated and transferred which would make the entire 

system more functional.  

 



Reference: 

 

[1] D. Hale, "Mines JTK: Revision 487," http://boole.mines.edu/jtk. Last accessed on June 

19,2006. 

 

[2] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide Fifth Edition. 

Boston: Silicon Graphics, 2006. 

 

[3] "JavaTM 2 Platform, Standard Edition 5.0 API Specification," 

http://java.sun.com/j2se/1.5.0/docs/api/index.html. Last accessed on June,19 2006. 

 

[4] Stanford University Computer Graphics Laboratory, "The Stanford 3D Scanning 

Repository," http://graphics.stanford.edu/data/3Dscanrep. Last accessed on June 19, 2006. 



Figures - Examples Taken From Test Code 

 

 



 


