Photolithography Management
Web Application

Atmel Corporation

By

Cache Hamm
Jeremy Powell

June 23rd, 2006

Executive Summary

The goal of this project was to advance a photolithography product management
application to an advanced beta stage. This application was to be browser based, with
advanced search and editing functionality. The databases created to serve this application
would keep a record of the current status of all products, as well as a historical record.
Upon a search request, the application should display a filtered grid of results, which
could then be selected, edited, and the history viewed.

The project was implemented using ASP.NET as the application foundation. Visual
Basic .NET (VB.NET) was used for server-side execution and process requests, and the
database was developed and executed on MS SQL Server 2005. The application was
developed in Visual Web Developer, a web development tool available from Microsoft.

As the project evolved, some of the original requirements were changed or removed.
Our team has implemented all requested functionality. The application supports the
requested search features, mass and single editing, and a current and historical database.
Concurrency checking was a non-requested feature the team had wanted to implement,
unfortunately the time constraints did not permit this. Graphing functionality was
intended to be implemented only if time allowed, which it did not.

Overall the team is pleased with the final product. All goals were met, and in some

cases, exceeded.

CONTENTS

. Executive Summary............oooiiiiii e 1
e ADSITACE. L 3
Introduction to the Project...........ooviiiiiiiiii e 3
Requirements and Specifications..............ccoviiiiiiiiiiiiiiiii i, 5
D T3 ¥ 6

Implementationc..ooeiiiiiiiiiii e O

. Results and ConcluSION.uuuuete e 10

Abstract

Atmel Corporation requests a replacement software system that would allow the
photolithography process to be managed more easily. This new tool will be a web
browser based application and include functionality not available in the current program.
Its purpose is to allow Atmel’s engineers to quickly search the company product list and
adjust their properties. The core features will include the following:

¢ A new, normalized database

» Database search functionality for all data fields

e Individual product editing

* Mass editing functionality for multiple products

* A new and improved Graphical User Interface(GUI)

* Email notification to all relevant departments with each database change.
* A historical database logging all changes made.

Introduction

e Background

Founded in 1984, Atmel Corporation is one of the largest semiconductor
manufacturers in the world. They produce a broad range of products, featured in
everything from iPods to television remotes. After surviving the bursting of technology
stocks at the turn of the century, Atmel is currently facing a changed market with stronger
competition. Because of this new market environment, Atmel is undergoing a company-

wide effort to increase efficiency. This new efficiency model will enable Atmel to gain a

competitive advantage in the marketplace. As part of this effort, it has asked this team to
write a more effective, user friendly replacement for its current photolithography

management program.

 (QGoal

The goal of this project is to develop a browser based photolithography product
management application. This application will include advanced search and editing
functionality. A normalized database would hold current products and product
parameters. A historical, non-normalized database would log any changes made to the
normalized database. Search results will be presented in an easily readable grid format,

which can then be selected, edited, and viewed historically.

Requirements and Specifications

* Functional Requirements
o Multiple Search Fields
* Currently, Atmel’s program only allows searching for a product
based on one data field of the product. Atmel wishes to extend the
search functionality to provide its users to search for a product with
respect to any or all data fields.
= “Wildcard” searching must be supported, allowing the user to
search a partial string and get all products containing that string
returned.
o Editing
» The users must have the ability to update product values used in
the photolithography process.
* The editing engine must include the ability to edit multiple items at
once.
* The dropdown menus must enable the user to change the current
property to a new value, or to increase (or decrease) the property by
a fixed offset or percentage
o After a user has changed some value(s), an email notification must be sent
to all affected departments with the appropriate information.

» Nonfunctional Requirements

o

The application must provide the user with better functionality and a more
intuitive user interface. The application must be browser based, allowing
employees to access the program anywhere in the world via the Atmel
website

Search textboxes for every product parameter must be included on the
search page

The product database must be normalized and efficient.

The historical database must store comments, time, date, changes, and the
user name of the editor.

The editing engine must be complemented by textboxes and drop down
menus, for each editable field.

Below is a diagram regarding the interaction between the application, the database, and

the previous

system.

Y

S

Web Page Application
- Search Page MS SQL Database
- History Page
- Modification Page > Current .Products
- Retrieve Initial Data from (Normallzed)
Previous System and populate - Details
database
Historical Data
- Modifications
- User Details
- Time & Date

Previous System
- Current Product List

Design

* Overview
After constructing the flow diagram below, we were able to determine that the final

product would contain three dynamic web pages; Search, Edit and History.

e Design Components

Logged In Home Page

v

Search

< —»
Edit |g—— View History

o Search

= The search page will query the database based on the user’s filter
parameters in the text boxes. It will then populate a grid with the
results returned by the query.

* Check Boxes will populate the far right column of the grid,
allowing the user to select certain products.

= “Edit Selected” and “View History” buttons will be provided on
the bottom of the page. These buttons will send the selected
products to the edit or view history pages.

o View History
= View History will query the historical database based on the

products sent by the search page. The results will be displayed in a
grid.

= The edit page is sent product values from the search page, which it
also displays in a grid. The user may then choose to change the
parameters for the displayed products using the options populating
the drop down menus.

= The drop down lists will be populated with * ’, “+’, and ‘%’ signs
or a letter depending on the type of the column.

* When “ " is selected, the database column will be set to the
value of the textbox.

e When “+” is selected, the program will add the database
value to the textbox value and store the result back into the
database.

* When “%” is selected, the program will increase the
database value by the percentage in the textbox and store
the result back into the database.

SpecTable
T Platekey
ProductID e e ——
ParamID ActivePlateHistory
= - PlateID F histarykey
I GC! OperationID . platekey
<[‘ Exposure
T . Focus
OperationTable ParamTable e
¥ OperationID @ ParamiD A
Layer PlatelD 50
Operation Exposure =it
| Focus Mode
i) Cwerride
PlateTable A Inactive
o @ PlatelD 50 [Comment]
Flatetame a1 [Userilame]
pon Mode [Date]
Status Override
| Inactive

ProductTable
% ProductID [erzh—
Product

o Current Platelist
* The current platelist must be normalized to maximize efficiency
* The current platelist will have five tables: PlateTable,
OperationTable, ProductTable, ParamTable, and SpecTable, the
primary table containing the foreign keys.
= Each table will hold several of the 15 parameters for each product.

o Historical Table

= The historical table platelist will not be normalized, it will be a
single table

* The historical database will log all 15 product parameters, as well
as a date, user name, and comment.

Implementation

Atmel suggested the application be developed using the .NET framework, version 2.0.
The team took this advice and decided to develop in Visual Web Developer, a Microsoft .
NET environment. Visual Web Developer combines coding and a graphical user
interface to provide debugging, code formatting, prewritten code, and database
management services. Overall, NET and Visual Web Developer have proven to be a
wise choice, as it has given the team increased design flexibility and shortened the
development life cycle.

There were three sides to the development of this project; client side programming,
server side programming, and the databases. The client side programming was primarily
written in HTML and ASP.NET, and debugged in Firefox and Internet Explorer. The
server side programming was written in VB.NET. The database and tables were created

using MS SQL Server Management Express and SQL scripts.

* First Iteration : Database Development

The application must access two database tables; a table containing the current state of
all products, and a table containing historical information. The initial database design
called for a simple n x 15 table for both the historical and current platelist tables. Later, it
was decided that the current platelist table should be normalized and split into five
different tables.

In normalizing the database, a VB.NET script was written to import the platelist.txt
file into an MS SQL database table. The table was then split into the five tables described
above using MS SQL statements. Foreign and primary keys for each table were set using
the MS SQL Server Management Express.

The historical table was created using the n x 15 current platelist table as a template

and adding the additional columns for comment, date, and user name.

e Second Iteration : Search

The search page was the first page developed for the application. It was designed
cosmetically first, creating a user friendly interface of textboxes and a search button. An
ASP.NET gridview was created below the textboxes. When the user clicked the “search”
button, an MS SQL SELECT statement was called to query the database using the
textbox values as parameters. The results of this query were configured to populate the
gridview.

The default textbox values were set to a percentage symbol (‘%’), the “wildcard”

value for SQL. This ensured that if the user wanted to filter only one parameter, the SQL

statement would still use wildcards to query the other columns, and the gridview would
be correctly filtered by the one parameter.

A new column was created on the far right of the gridview and populated with
checkboxes. This enabled the user to check the results of their query that they were
interested in. Finally, two buttons were created below the gridview: “View History” and

“Edit Selected”

e Third Iteration : Editing

The edit page was by far the most challenging aspect of this project. ASP.NET has
built in functionality for individual editing, however, Atmel had requested mass editing
functionality. Unfortunately, there was no easy way to expand the prewritten individual
editing and a new system had to be designed from the ground up.

First, a gridview was populated using the selected products passed from the search
page. Drop down menus and textboxes were added above the gridview, with each
textbox corresponding to the column below it.

A simple SQL statement was written to update a single row in the gridview using the
textboxes as parameters. Once this was shown to be working correctly, VB code was
added to support the dropdown menu functionality.

Finally, a loop was created which ran through each row of the database, calling the
SQL update statement each time. This allowed multiple rows to be changed at once,

completing the mass update functionality Atmel requested.

 Final Iteration : Historical View Page and Email

Compared to the editing SQL statements, the historical database was very easy to
accomplish. A page was created with two gridviews, one above the other. The top grid
was populated using the selected products passed from the search page. Hyperlinks
labeled “history” were adding to a new column on the far right. When a hyperlink was
clicked, the lower gridview queried the historical database and was populated with this
history of the corresponding product.

Emailing was simple to implement into the system. Code was added on the edit page
to send an email to all affect Atmel departments when a product was changed. This email

contains the identifying fields of the updated product and user comments.

Results and Conclusion

All goals have been met. A functioning application has been created with all
requested functionality. There still remains a few out of scope requirements, but the
application as a whole is complete. The current platelist database is normalized and
searchable. The search results are editable with email sent to all necessary departments.

A historical database is updated with every change and is viewable on request.

Future Plans

The next step for this application is the addition of the remaining features necessary
for completion. Concurrency checks and historical database graphing must be
implemented. The installation and set up of the system is well documented, but could be
automated with the implementation of scripts. It is the team’s recommendation that the

original text file database is retired from use and the normalized database used in its

place. If both databases are to coexist, then each some form of communication with the
original text file database should be established to ensure that each database is kept

current.

