
1/27/2019

1

CSCI 262

Data Structures

6 – Stacks and Queues

Overview

 Previously: linked lists
 Easy addition/remove at ends

 O(1) – constant time – operations:
 Add to front

 Add to end

 Remove from front

 This time: stacks & queues
 Only permit operations at ends

 Easily implemented with linked lists

 Despite simplicity, lots of applications

STACKS

Last in, first out:

“Last in, first out”

Stacks are a LIFO (Last in, first out) structure.

Think of pancakes:

This pancake was put on top last.

Which one would you eat first?
Which would you eat second?

Three Operations

“World” “World” “World”

“Hello” “Hello”

top: Look at
the top item
on the stack.

push: Add an
item to the top
of the stack.

pop: Remove
the top item
from the stack.

A Simple Stack Class

class stack {

public:

char top();

void push(char c);

void pop();

size_t size();

bool is_empty();

private:

// private stuff

};

These operations are
sometimes combined, e.g.,
pop() may return the top
value on the stack as well as
removing it from the stack.

To think about:
Note that both push and pop operate
on the top of the stack; if you used a
(singly) linked list implementation,
which end of the list would hold the
top element?
What if you used a vector instead?

1/27/2019

2

Using Stacks

What does this code do?

stack letters;
string text = "Data structures";
for (int j = 0; j < text.length(); j++) {

letters.push(text[j]);
}

while (!letters.is_empty()) {
cout << letters.top();
letters.pop();

}

Applications

 Syntax analysis
 Are parentheses, brackets, etc. balanced?
 Nested structures (e.g., functions & variable scopes)

 Traversing/searching branching structures
 Trees
 Mazes

 Programming languages/processors
 Forth, Postscript
 Stack machines (e.g., Java virtual machine)

Balancing Game

Rules:

 To start, make an empty stack.

 If you see a (, {, or [, push it onto the stack

 If you see a), }, or], try to pop the matching
delimiter from the stack, but:
 If the stack is empty, yell “UNDERFLOW!”

 If wrong character is at the top, yell “SYNTAX ERROR!”

 When the game ends, if your stack is empty, yell
“I WIN!” else yell “SYNTAX ERROR!”

Balancing Game Inputs

 (easy)

 [[x];

 {um}]-

 {(a)|(b)}(c)

 ((x + y)*(m[a)]{z})

 ((x + y)*(m[a]){z})

“The Stack”

“Bottom” of stack

main()

function1

function2

function3

function4

“Top” of stack

Local variables declared in main,
return address, other stuff.

Local variables declared in function1;
arguments passed by value into
function1, return address, other stuff.

Etc.

Each “frame” is created when the function
is called, and destroyed when the function
exits.

When we talk about “the stack”, we usually mean a very
specific stack; the memory stack of a running program:

Th
is

 d
ir

ec
ti

o
n

 is
 t

ra
d

it
io

n
al

 f
o

r
“t

h
e

st
ac

k”

STL Stack

#include <stack>

template <class ValueType> class stack

Operations:
push(ValueType v) // push value onto top of stack
pop() // pop (remove) top value
top() // return top value
size() // return number of elements
empty() // true if no elements

1/27/2019

3

QUEUES

First in, first out:

“First in, first out”

Queues are a FIFO (first in, first out) structure.

Think of a line of people waiting their turn:

If people are polite, the first in line is done first.

Queue vs. Stack

Stack. All
interactions
are with the
top of the
stack.

Queue: items are
added to the back
and taken from the
front.

backfront

Operations

 Adding an item to a queue: enqueue*

 Removing an item from a queue: de-queue*

4 7 1 3 9 9 is enqueued

4 7 1 3 94 is de-queued

backfront

backfront
*These are the modern
names. You’ll find lots of
implementations using
“push” and “pop” instead,
including the STL.

A Simple Queue Class

class queue {

public:

char front();

void enqueue(char c);

void dequeue();

size_t size();

bool is_empty();

private:

// private stuff

};

If you used a (singly) linked list
implementation, which end of the list
should hold the front element?
Would a vector make a good queue
implementation?

Using Queues

What does this code do?

queue letters;

string text = "Data structures";

for (int j = 0; j < text.length(); j++) {

letters.enqueue(text[j]);

}

while (!letters.is_empty()) {

cout << letters.front();

letters.dequeue();

}

1/27/2019

4

Uses for Queues

Anywhere you need to keep things in order,
particularly by time of arrival:

 Buffering character input

 Print jobs

 Process scheduling

 I/O request scheduling

 Web page request servicing

 Event handling (GUI, simulations, etc.)

STL Queue

#include <queue>

template <class ValueType> class queue

Operations:
push(ValueType v) // enqueue (add value to back)
pop() // dequeue (remove front value)
front() // return front value
back() // return back value
size() // return number of elements
empty() // true if no elements

GRAPH SEARCH

Stack/queue applications

Graphs

In computer science
(and math) graphs
model relationships
between things.

E.g., what cities are
connected to each by
a highway?

Boulder

Golden

Denver

Ft.
Collins

Finding Your Way

If I want to get from Ft.
Collins to Golden, how
can I find:

 Some path

 The shortest path

 The path going
through the fewest
other cities

 …

Boulder

Golden

Denver

Ft.
Collins

Graph Algorithms

 Many powerful algorithms on graphs

 Answer the above questions and more

 Study these in CSCI 406 – Algorithms

 Two key algorithms for graph search:

 Depth-first search – can use recursion OR stacks

 Breadth-first search – easiest to use queues

1/27/2019

5

Depth-First Search (DFS)

 Push Ft. Collins onto the
stack

 While the stack is not
empty:
 Pop a city from the stack

 If the city is Golden,
done!

 Otherwise, push all
adjacent cities onto the
stack

(Illustration on board)

Boulder

Golden

Denver

Ft.
Collins

Breadth-First Search (BFS)

 Same as DFS, but using a queue

 DFS goes as far as it can go until getting stuck,
then backs up to most recent “intersection”
 Lots of applications, mostly related to other graph

algorithms/applications

 BFS goes to all nearest cities first, then the
next nearest cities, etc.
 Great for finding fewest hops

 With some tweaks, can find shortest path

Up Next

 Today
 Read Sections 12.1 – 12.3, 14.3
 Lab 3 due

 Wednesday, January 30
 Analysis of algorithms & Big O
 Selection sort

 Friday, February 1
 Lab 4 – TBD
 Project 2 – Mazes assigned (graph search!)
 APT 2 due

27

