
3/20/2018

1

CSCI 262

Data Structures

17 – Selection Sort

Sorting

 Input: a list of elements, e.g. integers

 Output: a list of the input elements in sorted order

Why do we study this problem?

 Teaching example
 Algorithm design

 Algorithm analysis

 Sorting is also useful for all sorts of applications

2

Selection Sort

 Input: a list of elements, e.g. integers

 Output: a list of the input elements in sorted order

 A simple solution:

 Find the minimum element in the list

 Swap it with the first element in the list

 Sort the sublist after the first element

 This sorting algorithm is named selection sort.

3

Selection Sort Illustrated

4

5 7 2 10 3 1 6

Find min element

1 7 2 10 3 5 6

Swap with first element

7 2 10 3 5 61

Sort the remaining elements

Selection Sort Code

template <typename T>
void selection_sort(vector<T> & vec) {

int n = vec.size();
for (int left = 0; left < n; left++) {

int right = left;
for (int j = left + 1; j < n; j++) {

if (vec[j] < vec[right]) right = j;
}
swap(vec[left], vec[right]);

}
}

5

Analyzing Selection Sort

Recall we want to count basic computer steps…

1 template <typename T>
2 void selection_sort(Vector<T> & vec) {
3 int n = vec.size();
4 for (int left = 0; left < n; left++) {
5 int right = left;
6 for (int j = left + 1; j < n; j++) {
7 if (vec[j] < vec[right])
8 right = j;
9 }
10 swap(vec[left], vec[right]);
11 }
12 }

6

1 step

1 step

1 step

3 steps

x times n times

What is x? Ans: n – left – 1.
How do we add these up?

3/20/2018

2

Analyzing Selection Sort

Things we can easily count:

1 step (line 3)

4n steps (lines 5 and 10)

Things that are trickier:

n – left – 1 (different value of left each time)

7

Analyzing Selection Sort

Just have to count carefully:

1st time through:

left = 0, so n – left – 1 = n – 1

2nd time through:

left = 1, so n – left – 1 = n – 2

…

Last time through:

left = n – 1, so n – left – 1 = 0

8

Analyzing Selection Sort

Putting it all together, we have:
Cost of selection sort is

1 + 4n + n – 1 + n – 2 + … + 0

= 1 + 4n + n(n – 1)/2
= n2/2 + 7n/2 + 1

What is the “big-O” of this expression?

9

We know this!

Visual Analysis

Preceding pages were very rigorous in counting

Sometimes, a visual approach is simpler:

10

5 7 2 10 3 1 6Original list

5 7 2 10 3 1 6Elements “touched” in first loop iteration

1 7 2 10 3 5 6Elements “touched” in second loop iteration

1 2 7 10 3 5 6Elements “touched” in third loop iteration

…

1 2 3 5 6 7 10Last iteration

n

n - 1

n - 2

1

Cost: O(1 + 2 + … + n)

Analysis Complete

Selection sort is O(n2)

Can we do better?

(Yes, to be continued)

11

Up Next

 Friday, March 23

 Lab 9 (continued)

 Extra credit APTs assigned

- S P R I N G B R E A K ! -

 Monday, April 2

 Lab 9 due

