
3/13/2018

1

CSCI 262

Data Structures

15 – Recursion

RECURSION BASICS

Recursion

Recursion is defining something in terms of itself.
 We define many data structures recursively

 A linked list node contains a pointer to a node
 A binary tree node contains two pointers to nodes

 Many functions can be defined recursively:
 Factorial: 𝑛! = 𝑛 𝑛 − 1 !

 Differentiation (chain rule):
𝑑𝑓

𝑑𝑥
=

𝑑𝑓

𝑑𝑔
∙
𝑑𝑔

𝑑𝑥

 The binomial coefficient:
𝑛
𝑘

=
𝑛 − 1
𝑘 − 1

+
𝑛 − 1
𝑘

 Euclid’s algorithm for GCD is recursive!

Recursive Functions in C++

 Most modern programming languages allow
recursion in functions;

 In C++, you simply call a function from within
itself, e.g.:
unsigned int factorial(unsigned int n) {

if (n == 0) return 1;

return n * factorial(n-1);

}

The Base Case

Note the first line of the factorial function:
unsigned int factorial(unsigned int n) {

if (n == 0) return 1;
return n * factorial(n-1);

}

What would happen without that line?

When the input n is 0 we call it the base case.
The test for the base case must come before the
recursive call!

Example: Palindrome

 A palindrome is a recursive object; it is:
 Empty, or

 A single character, or

 A palindrome between two of the same character

 Here’s a recursive test function:
bool is_palindrome(const string &s, int start, int end) {

if (end <= start) return true;

return (s[start] == s[end] && is_palindrome(s, start+1, end-1));

}

bool is_palindrome(const string &s) {

return is_palindrome(s, 0, s.length() - 1);

}

Base cases

3/13/2018

2

Example: Binomial Coefficient

unsigned int nchoosek(unsigned int n, unsigned int k) {

assert(n >= k);

if (k == 0 || k == n) return 1;

return nchoosek(n-1,k) + nchoosek(n-1,k-1);

}

Note - more than one base case!

Note - two recursive calls!

Common Mistakes

 No base case:
void infinite(int n) {

cout << n << endl;
infinite(n-1);

}

 Recursion step doesn’t reduce problem:
void infinite2(int n) {

if (n < 0) return;
cout << n << endl;
infinite2(n);

}

Recursion vs. Iteration

Recursion is often the simplest approach.

However, recursion can usually be replaced by
iteration plus some storage for intermediate
results.

unsigned int factorial(unsigned int n) {

unsigned int ans = 1;

for (int j = n; j > 1; j--) ans = ans * j;

return ans;

}

THINKING RECURSIVELY

Problem Solving with Recursion

Recursive Decomposition

 Recursion works well when:
 Problem can be rewritten as smaller sub-problems

 Sub-problems have the same structure as original

 Solving all sub-problems solves original problem

 Examples (from previous slides)
 Palindrome rewritten as: “check outer two

characters, then test for smaller palindrome”

 Binomial coefficient rewritten as sum of “easier”
binomial coefficient problems

Recursion as Induction

The basic form of recursion follows that of induction:
 Recursive base case(s) == inductive base case(s)

 If we apply our function to problem of size 1, then we get
the correct answer

 E.g., if a string is size 1 or 0, then it is a palindrome

 Recursive step == inductive step
 If we are correct on problem of size n, then we are correct

on a problem of size n + 1
 Palindromes are a bit tricky here, because we actually

prove 2 cases, one for odd numbers and one for evens:
 If our program works for strings of n letters, then prove it works

for strings of n + 2 letters

3/13/2018

3

Example: Permutations

 Problem: find all permutations of an ordered
set

 E.g., what are all permutations of (a, b, c)?

 Answer: (a,b,c), (a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)

 What about (a,b,c,d,e,f,g,h,…)?

 Ugh. Let the computer do it.

 OK… how?

You Try: Permutations

 What is the recursive substructure?

 E.g., what is a smaller problem than (a,b,c)?

 Given the above, what is the base case?

BACKTRACKING

Trying everything

Maze Solving

Consider solving a maze:

 Assume potential loops, so right-hand rule fails

 Instead, have string and a marker

 Mark where you’ve been, so you don’t loop

 Unroll string behind you so you can back up

 Pick a passage, follow as far as you can until dead-
ending or repeating yourself

 Back-up to the last branching and try one you haven’t
tried (or back up further if no choices left)

Backtracking

 The maze solving algorithm above is an
example of backtracking

 Essentially, try every possibility in a branching
problem, avoiding repeats

 This sort of has the recursive sub-structure:

 The problem is only made smaller by a little bit

 We have to remember choices (or do we?)

Maze Solving Pseudocode

solve_2d_maze(maze, x, y):
if at exit, yay!
else:

mark maze[x][y] as visited
if can go right:

solve_2d_maze(maze, x+1, y)
if can go down:

solve_2d_maze(maze, x, y+1)
etc.

3/13/2018

4

MINIMAX

Winning!

Backtracking for Games

 For 2-player perfect information games

 Like trying every possibility, but:

 Assume each player is trying to win 

 Each player has a different goal, so have to switch

 Classic algorithm is called minimax

Example: Nim

 The game:

 Put n tokens on the table

 Each player gets to take 1, 2, or 3 tokens each turn

 Player who takes the last token loses

 Work backwards from base case:

 If 1 coin left for other player, you win

 Thus, if 2-4 coins left for you, you can force win

 However, if 5 coins left for you, you lose, because any
move you make leaves a good move for opponent…

Solving Nim Recursively

find_good_move(ncoins):

for i = 1 to min(3, ncoins):

if ncoins – i == 1: // base case: WIN 

return i

if find_good_move(ncoins – i) == NO_GOOD:

return i

return NO_GOOD // base case: LOSE 

Up Next

 Friday, March 16

 Lab 9 – Queues, revisited

 Monday, March 19

 Analysis of Algorithms 1

 Read Chapter 15

 Project 4 due

