3/13/2018

CSCI 262
Data Structures

15 — Recursion

RECURSION BASICS
CSiaMines CSiaMines
Recursion Recursive Functions in C++

Recursion is defining something in terms of itself.
= \We define many data structures recursively
= Alinked list node contains a pointer to a node
= A binary tree node contains two pointers to nodes
= Many functions can be defined recursively:
= Factorial: n! = n(n — 1)!
) - . df _df d
= Differentiation (chain rule): d—£ = é . d—i

= The binomial coefficient: (Z) = (Z B 1) + (n ; 1)

= Euclid’s algorithm for GCD is recursive!

CS@Mines

= Most modern programming languages allow
recursion in functions;

= |n C++, you simply call a function from within
itself, e.g.:
unsigned int factorial(unsigned int n) {
if (n == @) return 1;
return n * factorial(n-1);

CSiaMines

The Base Case

Note the first line of the factorial function:
unsigned int factorial(unsigned int n) {

return n * factorial(n-1);

}

What would happen without that line?

When the input n is 0 we call it the base case.

CS@Mines

Example: Palindrome

= A palindrome is a recursive object; it is:

= Empty, or

= Asingle character, or

= A palindrome between two of the same character
= Here’s a recursive test function:

bool is_palindrome(const string &s, int start, int end) {
if (end <= start) return true;

return (s[start] == s[end] && is_palindrome(s, start+l, end-1));

}
bool is_palindrome(const string &s) {

return is_palindrome(s, @, s.length() - 1);

}

CSaMines

3/13/2018

Example: Binomial Coefficient

unsigned int nchoosek(unsigned int n, unsigned int k) {
assert(n >= k);
if (k == @ || k == n) return 1;

return nchoosek(n-1,k) + nchoosek(n-1,k-1);

Note - more than one base case!
Note - two recursive calls!

CS@Mines

Common Mistakes

= No base case:
void infinite(int n) {
cout << n << endl;
infinite(n-1);

¥

= Recursion step doesn’t reduce problem:
void infinite2(int n) {
if (n < @) return;
cout << n << endl;
infinite2(n);

¥

CSiaMines

Recursion vs. Iteration

Recursion is often the simplest approach.

However, recursion can usually be replaced by
iteration plus some storage for intermediate
results.
unsigned int factorial(unsigned int n) {
unsigned int ans = 1;
for (int j =n; j > 1; j--) ans = ans * j;
return ans;

CS@Mines

Problem Solving with Recursion

THINKING RECURSIVELY

CSiaMines

Recursive Decomposition

= Recursion works well when:
= Problem can be rewritten as smaller sub-problems
= Sub-problems have the same structure as original
= Solving all sub-problems solves original problem

= Examples (from previous slides)

= Palindrome rewritten as: “check outer two
characters, then test for smaller palindrome”

= Binomial coefficient rewritten as sum of “easier”
binomial coefficient problems

CS@Mines

Recursion as Induction

The basic form of recursion follows that of induction:
= Recursive base case(s) == inductive base case(s)
= |f we apply our function to problem of size 1, then we get
the correct answer
= E.g., if astringissize 1 or 0, then it is a palindrome
= Recursive step == inductive step
= |f we are correct on problem of size n, then we are correct
on a problem of sizen +1
= Palindromes are a bit tricky here, because we actually
prove 2 cases, one for odd numbers and one for evens:

= |f our program works for strings of n letters, then prove it works
for strings of n + 2 letters

CSaMines

3/13/2018

Example: Permutations

= Problem: find all permutations of an ordered
set
= E.g., what are all permutations of (a, b, ¢)?
= Answer: (a,b,c), (a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)
= What about (a,b,c,d,e,f,g,h,..)?
= Ugh. Letthe computer do it.
= OK... how?

CS@Mines

You Try: Permutations

= What is the recursive substructure?
= E.g., what is a smaller problem than (a,b,c)?

= Given the above, what is the base case?

CSiaMines

Trying everything

BACKTRACKING

CS@Mines

Maze Solving

Consider solving a maze:
= Assume potential loops, so right-hand rule fails
= |nstead, have string and a marker

= Mark where you’ve been, so you don’t loop

= Unroll string behind you so you can back up

= Pick a passage, follow as far as you can until dead-
ending or repeating yourself

= Back-up to the last branching and try one you haven’t
tried (or back up further if no choices left)

CSiaMines

Backtracking

= The maze solving algorithm above is an
example of backtracking

= Essentially, try every possibility in a branching
problem, avoiding repeats

= This sort of has the recursive sub-structure:
= The problem is only made smaller by a little bit
= \We have to remember choices (or do we?)

CS@Mines

Maze Solving Pseudocode

solve_2d_maze(maze, X, y):
if at exit, yay!
else:
mark maze[x][y] as visited
if can go right:
solve_2d_maze(maze, x+1, y)
if can go down:
solve_2d_maze(maze, x, y+1)
etc.

CSaMines

3/13/2018

Backtracking for Games

= For 2-player perfect information games
= Like trying every possibility, but:
= Assume each player is trying to win ©
= Each player has a different goal, so have to switch

= Classic algorithm is called minimax

Winning!
MINIMAX
CS@Mines CS@Mines
Example: Nim Solving Nim Recursively
= The game: find_good_move(ncoins):

= Put n tokens on the table
= Each player gets to take 1, 2, or 3 tokens each turn
= Player who takes the last token loses
= Work backwards from base case:
= If 1 coin left for other player, you win
= Thus, if 2-4 coins left for you, you can force win

= However, if 5 coins left for you, you lose, because any
move you make leaves a good move for opponent...

CS@Mines

fori=1to min(3, ncoins):

if ncoins—i==1: // base case: WIN ©
returni

if find_good_move(ncoins—i) == NO_GOOD:
returni

return NO_GOOD // base case: LOSE ®

CSiaMines

Up Next

= Friday, March 16
= Lab 9 — Queues, revisited
= Monday, March 19
= Analysis of Algorithms 1
= Read Chapter 15
= Project 4 due

CS@Mines

