
10/7/2018

1

CSCI 262

Data Structures

9 – Sets

SETS

All about

2

Sets

 An abstract data type for holding unique
elements
 This is another container for objects

 However, no repetition of objects

 Applications
 Dictionary – a set of valid words

 Compilers – sets of vars, classes, etc.

 Spam filters – probability measure on sets of 
words in emails

3

Venn Diagram

4

The Set ADT

Sets do the following very efficiently:

 Find (test for presence of) an item in the set

 Insert an item into the set (preserving uniqueness)

 Remove an item from the set

5

Types of Sets

 Ordered sets
 Items must be comparable

 Items are iterated in sort order

 Typically implemented using binary search trees –
a future lecture topic

 Unordered sets
 Typically faster than ordered sets

 Items are iterated in no particular order

 Implemented using hashtables – a future lecture 
topic

6



10/7/2018

2

STL Sets (Ordered)

#include <set>

template <class T> class set

Methods:
find(T &val) // Find matching element (returns iterator)
count(T &val) // Find matching element (returns count)
insert(T &val) // Insert element, if not present
emplace(T &val) // Same as insert
erase(T &val) // Remove element, if present
size() // Return number of elements
empty() // Return true if no elements
begin() // Get iterator to “first” element of set
end() // Get iterator marking “end” of set

7

Set Example 1

set<string> words;

string tt = "How much wood could a woodchuck…";

istringstream s_in(tt);

while (!s_in.eof()) {

string w;

s_in >> w;

words.insert(w);

}

for (string word: words) cout << word << ' ';

Output:

How a chuck could if much wood woodchuck 

8

Note sorted order!

Set Example 2

set<string> shakespeare_words;
ifstream fin("Shakespeare.txt");
while (!fin.eof()) {

string w;
fin >> w;
shakespeare_words.insert(w);

}

while (true) {
string s;
cout << "Enter a word: ";
cin >> s;
if (shakespeare_words.count(s) > 0) {

cout << s << " is a Shakespeare word." << endl;
} else {

cout << s << " is not a Shakespeare word." << endl;
}

}

9

Set Example 3

set<int> a = {1, 3, 7, 23, 2};
set<int> b = {42, 17, 23, 3};
set<int> a_intersect_b = a;
set<int> a_union_b = b;
set<int> a_minus_b = a;
for (int x: a) {

a_union_b.insert(x);
if (b.count(x) > 0) {

a_minus_b.erase(x);
} else {

a_intersect_b.erase(x);
}

}

10

Exercise: what are 
the contents of 
a_intersect_b,
a_union_b, and 
a_minus_b?

ITERATORS

Interlude

11

Iterators

 Objects which point to elements of a 
container

 In the abstract, work much like pointers

 Use dereference operator (*) to access value

 Use ++ to advance to next element

 Many types of iterators, different capabilities

 Forward-only, bi-directional, random-access

 Read-only or mutable

 The magic behind range-based for loops

12

A future 
topic…



10/7/2018

3

Obtaining Iterators

 All iterable containers* provide:

 begin() – returns iterator to “first” element

 end() – returns iterator indicating “end”

 N.b.: end() is a marker that does not point to a valid 
element: you cannot/should not dereference it!

 Container methods may return iterators

 E.g., find(), but also insert()

 Standard library functions find(), find_if(), etc.

13

*vectors, sets, maps, lists, deques, but not stacks, queues

Iterating on Sets with Iterators

Example 1
set<string> fruit = {"pear", "apple", "orange", "cherry"};

set<string>::iterator iter = fruit.begin();

while (iter != fruit.end()) {

cout << *iter << ' ';

iter++;

}

Example 2
set<string> fruit = {"pear", "apple", "orange", "cherry"};

for (auto iter = fruit.begin(); iter != fruit.end(); iter++) {

cout << *iter << ' ';

}

14

Output for both is:
apple cherry orange pear

Note sorted order!

Range-based For Loop

The range-based for loop works any iterable
container:

set<string> fruit = {"pear", "apple", "orange", "cherry"};
for (string f: fruit) {

cout << f << " ";
}

Output is same as if we used iterators directly:
apple cherry orange pear

This is the easiest way to loop on a set.

15

FINAL WORDS

16

STL Unordered Sets

 Same basic interface as (ordered) sets
 Iterable, but not in sort order:

#include <unordered_set>
unordered_set<string> words;
string tt = "How much wood could a woodchuck…";
istringstream s_in(tt);
while (!s_in.eof()) {

string w;
s_in >> w;
words.insert(w);

}
for (string word: words) cout << word << ' ';

Output:
chuck a How much woodchuck could if wood

17

Up Next

 Read Sections 15.1 – 15.2

 Wednesday, October 10

 Lecture: Maps


