
10/1/2018

1

CSCI 262

Data Structures

8 – Stacks and Queues

STACKS

Last in, first out:

“Last in, first out”

Stacks are a LIFO (Last in, first out) structure.

Think of pancakes:

This pancake was put on top last.

Which one would you eat first?
Which would you eat second?

Three Operations

“World” “World” “World”

“Hello” “Hello”

top: Look at
the top item
on the stack.

push: Add an
item to the top
of the stack.

pop: Remove
the top item
from the stack.

A Simple Stack Class

class stack {

public:

char top();

void push(char c);

void pop();

size_t size();

bool is_empty();

private:

// private stuff

};

These operations are
sometimes combined, e.g.,
pop() may return the top
value on the stack as well as
removing it from the stack.

Using Stacks

What does this code do?

stack letters;
string text = "Data structures";
for (int j = 0; j < text.length(); j++) {

letters.push(text[j]);
}

while (!letters.is_empty()) {
cout << letters.top();
letters.pop();

}

10/1/2018

2

Applications

 Syntax analysis
 Are parentheses, brackets, etc. balanced?
 Nested structures (e.g., functions & variable scopes)

 Traversing/searching branching structures
 Trees
 Mazes

 Programming languages/processors
 Forth, Postscript
 Stack machines (e.g., Java virtual machine)

Balancing Game

Rules:

 To start, make an empty stack.

 If you see a (, {, or [, push it onto the stack

 If you see a), }, or], try to pop the matching
delimiter from the stack, but:
 If the stack is empty, yell “UNDERFLOW!”

 If wrong character is at the top, yell “SYNTAX ERROR!”

 When the game ends, if your stack is empty, yell
“I WIN!” else yell “SYNTAX ERROR!”

Balancing Game Inputs

 (easy)

 [[x];

 {um}]-

 {(a)|(b)}(c)

 ((x + y)*(m[a)]{z})

 ((x + y)*(m[a]){z})

“The Stack”

“Bottom” of stack

main()

function1

function2

function3

function4

“Top” of stack

Local variables declared in main,
return address, other stuff.

Local variables declared in function1;
arguments passed by value into
function1, return address, other stuff.

Etc.

Each “frame” is created when the function
is called, and destroyed when the function
exits.

When we talk about “the stack”, we usually mean a very
specific stack; the memory stack of a running program:

Th
is

 d
ir

ec
ti

o
n

 is
 t

ra
d

it
io

n
al

 f
o

r
“t

h
e

st
ac

k”

STL Stack

#include <stack>

template <class ValueType> class stack

Operations:
push(ValueType v) // push value onto top of stack
pop() // pop (remove) top value
top() // return top value
size() // return number of elements
empty() // true if no elements

QUEUES

First in, first out:

10/1/2018

3

“First in, first out”

Queues are a FIFO (first in, first out) structure.

Think of a line of people waiting their turn:

If people are polite, the first in line is done first.

Queue vs. Stack

Stack. All
interactions
are with the
top of the
stack.

Queue: items are
added to the back
and taken from the
front.

backfront

Operations

 Adding an item to a queue: enqueue*

 Removing an item from a queue: de-queue*

4 7 1 3 9 9 is enqueued

4 7 1 3 94 is de-queued

backfront

backfront
*These are the modern
names. You’ll find lots of
implementations using
“push” and “pop” instead,
including the STL.

A Simple Queue Class

class queue {

public:

char front();

void enqueue(char c);

void dequeue();

size_t size();

bool is_empty();

private:

// private stuff

};

Using Queues

What does this code do?

queue letters;

string text = "Data structures";

for (int j = 0; j < text.length(); j++) {

letters.enqueue(text[j]);

}

while (!letters.is_empty()) {

cout << letters.front();

letters.dequeue();

}

Uses for Queues

Anywhere you need to keep things in order,
particularly by time of arrival:

 Buffering character input

 Print jobs

 Process scheduling

 I/O request scheduling

 Web page request servicing

 Event handling (GUI, simulations, etc.)

10/1/2018

4

STL Queue

#include <queue>

template <class ValueType> class queue

Operations:
push(ValueType v) // enqueue (add value to back)
pop() // dequeue (remove front value)
front() // return front value
back() // return back value
size() // return number of elements
empty() // true if no elements

Up Next

 Read Sections 14.4 and 14.6

 Project 2 assigned

 Wednesday, October 3

 Go over midterms (hopefully!)

20

