
10/1/2018

1

CSCI 262

Data Structures

7 – Abstraction

Abstraction

one definition:

Generalization; ignoring or hiding details to capture 
some kind of commonality between different 
instances.

Source:
Dictionary.com, "abstraction," in The Free On-line Dictionary of 
Computing. Source location: Denis Howe. 
http://dictionary.reference.com/browse/abstraction. Available: 
http://dictionary.reference.com. Accessed: September 01, 2013.

2

Levels of Abstraction: Computer

 Programs

 Code libraries/operating 
system

 High-level language

 Virtual machine/compiler

 Assembly language

 Computer architecture
Least abstract

Most abstract

3

C++ Standard Libraries

 Provide:
 Functional abstractions (e.g., math functions)

 Structural abstractions (data types)

 Operating system/computer resources (storage, 
network, I/O)

 Two facets of a library:
 Interface

 Implementation

4

Interfaces

Interface:

 The user-facing part of the library

 The templates/classes/functions available

 Public parts only of classes and templates

 Implicitly includes documentation – how do I use it?

The interface hides the complexity of the underlying 
implementation (how does sqrt work?)

5

Interface Illustrated

Consider a generic car:
 Steering wheel
 Accelerator
 Brake pedal
 Gear shift (and maybe clutch)
 Mirrors
These form the car’s interface.

Implementation: varies by make, model, year

If you know how to drive, you can probably drive any car (ignoring 
automatic vs. manual) because you know how to use the standard 
interface.

6



10/1/2018

2

Same interface?

7

Levels of Abstraction: Data

 Abstract Data Types

 Concrete Data Types

 Storage (bits & bytes)

8

Example: Integer

 Abstract Data Type
 Domain: positive and negative integers

 Max, min values may be bounded

 Interface: +, –, ×, ÷, =, etc.

 Concrete data type:
 E.g., int
 Implementation: in compiler

 Storage:
 1 word = 4 bytes = 32 bits
 2’s complement representation (CSCI 341, others)

9

Abstract Data Type

 Defines a domain of values for the type

 Specifies a general interface for a type
 Primarily specifies behaviors
 Can also specify properties
 May specify performance characteristics

 Implementations allowed to vary
 Generally hidden
 Generally irrelevant (except when not – RTFM*)

*Read The Fine Manual

10

Containers

Structures which contain collections of objects:

 Vectors/Lists

 Stacks

 Queues

 Sets

 Maps

We will study all of these container types!

11

Why Study Containers

 They are incredibly useful:
 Data naturally occur in collections
 Key to many if not most important applications

 Spreadsheets, databases
 Signal processing/compression/cryptography
 MapReduce (Google)
 …

 They are instructive:
 Good examples of ADTs
 (Relatively) easy to understand and program
 Good models for complexity analysis

12



10/1/2018

3

Example: Vector

 Generalization of an array
 Sequential collection of data

 Random access
 Access items by index

 Access operations are constant time

 Principal operations
 Add, insert, remove

 Get, set at a particular index

 Get size

13

Standard Template Library Vector

#include <vector>

template <class T> class vector

Operations:
push_back(value) // add value to end
insert(position, value) // insert value before the specified iterator
erase(position) // remove value at specified iterator
at(index) // access (get/set) value at specified index
operator[index] // access (get/set) value at specified index
size() // get size
empty() // true if no elements
clear() // remove all elements
… …

14

Up Next

 Read Sections 14.4 and 14.6

 Project 2 assigned

 Wednesday, October 3

 Go over midterms (hopefully!)

15


