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CSCI 262
Data Structures

7 — Abstraction
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Abstraction

one definition:

Generalization; ignoring or hiding details to capture
some kind of commonality between different
instances.

Source

Dictionary.com, "abstraction," in The Free On-line Dictionary of
Computing. Source location: Denis Howe
http://dictionary.reference.com/browse/abstraction. Available:
http://dictionary.reference.com. Accessed: September 01, 2013.
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Levels of Abstraction: Computer

= Programs Mot abetract
= Code libraries/operating
system
= High-level language
= \/irtual machine/compiler
= Assembly language

Least abstract

= Computer architecture
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C++ Standard Libraries

= Provide:
= Functional abstractions (e.g., math functions)
= Structural abstractions (data types)

= Operating system/computer resources (storage,
network, 1/0)

= Two facets of a library:
= |nterface
= Implementation

CSiaMines

Interfaces

Interface:
= The user-facing part of the library
= The templates/classes/functions available

= Public parts only of classes and templates
= |Implicitly includes documentation —how do | use it?

The interface hides the complexity of the underlying
implementation (how does sqrt work?)
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Interface Illustrated

Consider a generic car:

= Steering wheel

= Accelerator

= Brake pedal

= Gear shift (and maybe clutch)
= Mirrors

These form the car’s interface.

Implementation: varies by make, model, year

If you know how to drive, you can probably drive any car (ignoring
automatic vs. manual) because you know how to use the standard
interface.
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Same interface?
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Levels of Abstraction: Data

= Abstract Data Types
= Concrete Data Types
= Storage (bits & bytes)
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Example: Integer

= Abstract Data Type

= Domain: positive and negative integers
= Max, min values may be bounded
= |nterface: +, —, x, +, =, etc.

= Concrete data type:
= E.g,int
= Implementation: in compiler

= Storage:
= 1 word =4 bytes = 32 bits
= 2’s complement representation (CSCI 341, others)
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Abstract Data Type
= Defines a domain of values for the type

= Specifies a general interface for a type
= Primarily specifies behaviors
= Can also specify properties
= May specify performance characteristics

= /mplementations allowed to vary
= Generally hidden
= Generallyirrelevant (except when not — RTFM*)

*Read The Fine Manual
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Containers

Structures which contain collections of objects:

= \ectors/Lists P —
= Stacks e —

= Queues s
= Sets L—.%
= Maps

We will study all of these container types!
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Why Study Containers

= They are incredibly useful:
= Data naturally occur in collections
= Key to many if not most important applications
= Spreadsheets, databases
= Signal processing/compression/cryptography
= MapReduce (Google)

= They are instructive:
= Good examples of ADTs
= (Relatively) easy to understand and program
= Good models for complexity analysis
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Example:Vector

= Generalization of an array
= Sequential collection of data
= Random access
= Access items by index
= Access operations are constant time
= Principal operations
= Add, insert, remove
= Get, set at a particular index
= Getsize
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Standard Template Library Vector

#include <vector>

template <class T> class vector

Operations:
push_back(value) // add value to end
insert(position, value) // insert value before the specified iterator
erase(position) // remove value at specified iterator
at(index) // access (get/set) value at specified index
operator[index] // access (get/set) value at specified index
size() // get size
empty() // true if no elements
clear() // remove all elements
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Up Next

= Read Sections 14.4 and 14.6
= Project 2 assigned
= Wednesday, October 3

= Go over midterms (hopefully!)
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