10/1/2018

CSCI 262
Data Structures

7 — Abstraction

CS@Mines

Abstraction

one definition:

Generalization; ignoring or hiding details to capture
some kind of commonality between different
instances.

Source

Dictionary.com, "abstraction," in The Free On-line Dictionary of
Computing. Source location: Denis Howe
http://dictionary.reference.com/browse/abstraction. Available:
http://dictionary.reference.com. Accessed: September 01, 2013.

CSiaMines

Levels of Abstraction: Computer

= Programs Mot abetract
= Code libraries/operating
system
= High-level language
= \/irtual machine/compiler
= Assembly language

Least abstract

= Computer architecture

CS@Mines

C++ Standard Libraries

= Provide:
= Functional abstractions (e.g., math functions)
= Structural abstractions (data types)

= Operating system/computer resources (storage,
network, 1/0)

= Two facets of a library:
= |nterface
= Implementation

CSiaMines

Interfaces

Interface:
= The user-facing part of the library
= The templates/classes/functions available

= Public parts only of classes and templates
= |Implicitly includes documentation —how do | use it?

The interface hides the complexity of the underlying
implementation (how does sqrt work?)

CS@Mines

Interface Illustrated

Consider a generic car:

= Steering wheel

= Accelerator

= Brake pedal

= Gear shift (and maybe clutch)
= Mirrors

These form the car’s interface.

Implementation: varies by make, model, year

If you know how to drive, you can probably drive any car (ignoring
automatic vs. manual) because you know how to use the standard
interface.

CSaMines

10/1/2018

Same interface?

CSiaMines

Levels of Abstraction: Data

= Abstract Data Types
= Concrete Data Types
= Storage (bits & bytes)

CSiaMines

Example: Integer

= Abstract Data Type

= Domain: positive and negative integers
= Max, min values may be bounded
= |nterface: +, —, x, +, =, etc.

= Concrete data type:
= E.g,int
= Implementation: in compiler

= Storage:
= 1 word =4 bytes = 32 bits
= 2’s complement representation (CSCI 341, others)

CSiaMines

Abstract Data Type
= Defines a domain of values for the type

= Specifies a general interface for a type
= Primarily specifies behaviors
= Can also specify properties
= May specify performance characteristics

= /mplementations allowed to vary
= Generally hidden
= Generallyirrelevant (except when not — RTFM*)

*Read The Fine Manual

CSiaMines

Containers

Structures which contain collections of objects:

= \ectors/Lists P —
= Stacks e —

= Queues s
= Sets L—.%
= Maps

We will study all of these container types!

CS@Mines i

Why Study Containers

= They are incredibly useful:
= Data naturally occur in collections
= Key to many if not most important applications
= Spreadsheets, databases
= Signal processing/compression/cryptography
= MapReduce (Google)

= They are instructive:
= Good examples of ADTs
= (Relatively) easy to understand and program
= Good models for complexity analysis

CSaMines 2

10/1/2018

Example:Vector

= Generalization of an array
= Sequential collection of data
= Random access
= Access items by index
= Access operations are constant time
= Principal operations
= Add, insert, remove
= Get, set at a particular index
= Getsize

CS@Mines

Standard Template Library Vector

#include <vector>

template <class T> class vector

Operations:
push_back(value) // add value to end
insert(position, value) // insert value before the specified iterator
erase(position) // remove value at specified iterator
at(index) // access (get/set) value at specified index
operator[index] // access (get/set) value at specified index
size() // get size
empty() // true if no elements
clear() // remove all elements

CSiaMines

Up Next

= Read Sections 14.4 and 14.6
= Project 2 assigned
= Wednesday, October 3

= Go over midterms (hopefully!)

CS@Mines

