9/18/2018

CSCI 262

Data Structures

6 — Dynamically Allocated Memory

CS@Mines

POINTERS AND ARRAYS

CSiaMines

Arrays are just sequential chunks of memory:

Arrays

Arrays and Pointers

Array variables are secretly pointers:

e 0x1009
oxt008 |0 oxioc: T
o007 | 1| o IR
oxoos | 0x1006 [] char *p = s;
e o
i W " ,e' cout << *p << endl; // prints 'H’
B oxt04 | H cout << *s << endl; // also prints 'H'
oxto0s | 2 Beioo: R
0x1002 253 0x1002 0
o001 | V7 .
oxt000 | 88 oo
OXOFFF OXOFFF e
CS@Mines CSiaMines
Arrays and Pointers
Pointers are also secretly array variables:
0x1009
o008 | O
e I char *p = s;
oaoos | ¥ for (int j = @; j < 5; j++) {
ox1005 | & cout << p[j] << endl;
oxt00s | HC ¥
- B To the compiler POINTER ARITHMETIC
o002 | 0 pl31 == *(p + J)
0x1001 16 !
0x1000 4
ox0FFF
CS5@Mines CS@Mines

9/18/2018

Pointer Arithmetic: char

Suppose:
char s[] = {'H",'e",'1",'1","'0"};
char* p = s;
We've stated that:
p[J1 == *(p + J)
Another way to look at it is:
p[j] == s[j] when p ==s
Thus:
p[@]=="H', p[1]=="e"', p[2]=="1", etc.

CS@Mines

Pointer Arithmetic: int

Now, suppose we have:
int arr[] = {42, 17, 33, 6};
int* q = arr;
It can be demonstrated that:
q[j] == *(q + j) == arr[j]
This implies that:
q[1] == *(q + 1) == arr[1] == 17

Then q + 1 isnotsimply 1 byte address beyond q,
but must be 4 bytes beyond g.

CSiaMines

Pointer Arithmetic

= Pointer arithmetic depends on type
= char* p - p++ advances by 1 byte
= int* q - g++ advances by 4 bytes (size of int)

= You can add or subtract:
= qg-- -> go back 4 bytes
=g+ 3 - qplus 12 bytes

= Just keep in mind the array/pointer equivalence:
sometype* ptr;
*(ptr + k) == ptr[k]
ife.
(ptr + k) == &(p[k]) // k * sizeof(sometype)
// bytes after ptr

CS@Mines

Miscellaneous

POINTER NOTES

CSiaMines

C-style Strings

In C, strings are simply arrays of char:
char *s = "Hello!"; // valid in C; for C++ add const

This array has size 7, not 6: the last entry stores byte value 0, or "\0":
o |
Without this value, there’s no way to detect the end of a string!

With it, though, we can do:
for (char* p = s; *p != "\@'; p++) { .. }

T e [v

[

String literals in C++ are still stored this way, but convert to the string type:

string foo = "Hello";
or
string("Hello")

CS@Mines

Pointers and Reference
Parameters

Reference parameters are not pointers!
Reference parameters are not pointers!
Reference parameters are not pointers!

If you have a function 50u8:css of confusion:
s . - enotes a
void foo (int &x) { } reference parameter

= &also used as

Inside foo, you cannot do address-of operator

*x = 10; // incorrect!
You just do
X = 10; // correct

References use
pointers “under the
covers”

CSaMines

9/18/2018

Array Limitations in C++

Standard C++ does not let you do this*:

int sz;

cout << "What size do you need?" << endl;
cin >> sz;

int arr[sz]; // compiler error

DYNAMIC ARRAY
ALLOCATION . A .
Strangely, later versions of C do allow this.
Confusingly, so does g++ (some versions).
CS@Mines : CSiaMines

Dynamic Array Allocation Where Does Memory Come

From?
So what if you know you’” need an array, but The stack: local variables, function
t th . I .) arguments, return values. Grows
not the size (at compile time)? “down’.

int sz;

cout << "What size do you need?" << endl;
cin >> sz;

int *arr = new int[sz];

The heap: dynamically allocated
memory (using new). Grows “up”.

Data Segment Global and static variables, constants.

Program code. Read only!

Note that new gives us a pointer to our memory.

CS@Mines ’ CSiaMines

Data Segment/BSS The Stack

Holds “stack frames” aka “activation records”
Each function call results in a new stack frame
Each stack frame contains memory for:
= Memory is pre-allocated, fixed in size = | ocal variables declared in the function

= Parameters passed into function

= Return address for function

When the function is exited, all of this
memory is returned to the stack
automatically.

Global and static variables:
= Only ever one instance of them

= Get stored in their own special area

CS5@Mines ' CS@Mines

9/18/2018

The Heap

A big ol’ hunk of memory!

= Get pieces of it (“allocate memory”) using new

= Pjeces stay allocated until explicitly released by
use of delete

Heap memory has a lifetime independent of scope
— it can be used after a function that created it
returns. You can’t do that with local variables!

CS@Mines

Stack vs Heap
= Stack: local aka automatic variables and arrays:
intz;
foof;

double darray[100];

= Heap: dynamically allocated objects and arrays:

int* p = newint;
foo* fp = new foo;
double* dptr = new double[100];

CSiaMines

Dynamic Arrays

Allocate dynamic arrays using new:
double *darray = new double[1024];

Use the array pointer just like a regular array:
for (int j = 0; j < 1024; j++)
darray[j] = 0.0;

Always clean up (deallocate) when you are done:
delete[] darray;

CS@Mines

DYNAMIC OBJECT
ALLOCATION

CSiaMines

Pointers, Objects, and Dynamic
Memory

Consider this simple class:
class student {
public:
string name;

student() {1}
student(string n) { name = s; }

void eat();

void sleep();

s

CS@Mines

Creating New Objects: Stack

If we want to create a student locally:
student studentl;
student student2("Kirk");

= These are created on the stack.
= They will vanish when exiting the current scope.

studentl is created using the default constructor:
student();

student2 is created using another constructor:
student(string s);

CSaMines

9/18/2018

Creating New Objects: Heap

We can also create single objects dynamically:
student* spl = new student;
student* sp2 = new student("Picard");

Pointers!
These are created on the heap.

They will live forever unless deleted:
delete spl; Note — no square

delete sp2; brackets when calling
’ delete on a single object

Note, again, the two different constructors.

CS@Mines

Working With Object Variables

Consider:
student studentl;
student* p = new student;

We know that we can do:
studentl.name = "Sisko";

studentl.eat();

What can we do with p?

CSiaMines

Working with Object Pointers

We have:

student* p = new student;

We could just dereference (perfectly fine!)

(*p).name = "Janeway";
A 1 . Note that this won’t work correctly:
(*p).sleep(); *p.name = "Janeway";

The . has higher precedence than *

C++ gives us another operator we can use directly:
p->name = "Archer";
p->sleep();

CS@Mines

The Destructor

The counterpart to the constructor:
= No return type
= Name is ~ followed by class name, e.g.,
~student();
= Never takes a parameter!

The destructor is called automatically when:
= Alocal (stack allocated) object goes out of scope
= delete is called on a dynamically allocated object

CSiaMines

Arrays of Objects

We can also use new to create arrays of objects:
int n = 100;
student* arr = new student[n];
The default constructor is used to create every object in the array.

Now we cando, e.g.:
for (int i = @; i < n; i++)
arr[i].gpa = 4.0;

As with base types, we use delete[] on dynamically allocated arrays of
objects:

delete[] arr;
The destructor is called on every object in the array.

CS@Mines

WRAPPING UP

CSaMines

9/18/2018

Dynamic Memory Don’ts

Never:

= Dereference a pointer which has not been set to valid
memory (using new or &)

= Dereference a pointer to memory which has already
been deallocated (a dangling pointer)

= Change or lose a pointer which is pointing to
dynamically allocated memory (or you won’t be able
to deallocate — this causes a memory leak)

= Use delete on a pointer which isn’t pointing to
dynamically allocated memory (e.g., a dangling or
NULL pointer)

CS@Mines

Up Next

= Friday, Sept. 21
= Lab 5 - Memory
= APT 2 Due
= Monday, Sept. 24
= Midterm Review
= Lab 5 Due
= \Wednesday, Sept. 26
= Midterm 1 (in class)

CSiaMines

