
9/18/2018

1

CSCI 262

Data Structures

6 – Dynamically Allocated Memory

POINTERS AND ARRAYS

2

Arrays

Arrays are just sequential chunks of memory:

char s[5] = {'H','e','l','l','o'};

‘o’

‘l’

‘l’

‘e’

‘H’

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

3

Arrays and Pointers

Array variables are secretly pointers:

char s[5] = {'H','e','l','l','o'};
char *p = s;

cout << *p << endl; // prints 'H'
cout << *s << endl; // also prints 'H'

p

‘o’

‘l’

‘l’

‘e’

‘H’

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

s[]

4

Arrays and Pointers

Pointers are also secretly array variables:

char s[5] = {'H','e','l','l','o'};
char *p = s;

for (int j = 0; j < 5; j++) {
cout << p[j] << endl;

}

To the compiler:
p[j] == *(p + j)

p

‘o’

‘l’

‘l’

‘e’

‘H’

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

s[]

5

POINTER ARITHMETIC

6

9/18/2018

2

Pointer Arithmetic: char

Suppose:
char s[] = {'H','e','l','l','o'};

char* p = s;

We’ve stated that:
p[j] == *(p + j)

Another way to look at it is:
p[j] == s[j] when p == s

Thus:
p[0]=='H', p[1]=='e', p[2]=='l', etc.

7

Pointer Arithmetic: int

Now, suppose we have:
int arr[] = {42, 17, 33, 6};
int* q = arr;

It can be demonstrated that:
q[j] == *(q + j) == arr[j]

This implies that:
q[1] == *(q + 1) == arr[1] == 17

Then q + 1 is not simply 1 byte address beyond q,
but must be 4 bytes beyond q.

8

Pointer Arithmetic

 Pointer arithmetic depends on type
 char* p  p++ advances by 1 byte
 int* q  q++ advances by 4 bytes (size of int)

 You can add or subtract:
 q--  go back 4 bytes
 q + 3  q plus 12 bytes

 Just keep in mind the array/pointer equivalence:
sometype* ptr;
*(ptr + k) == ptr[k]

i.e.
(ptr + k) == &(p[k]) // k * sizeof(sometype)

// bytes after ptr

9

POINTER NOTES

Miscellaneous

10

C-style Strings

In C, strings are simply arrays of char:
char *s = "Hello!"; // valid in C; for C++ add const

This array has size 7, not 6: the last entry stores byte value 0, or '\0':

Without this value, there’s no way to detect the end of a string!
With it, though, we can do:

for (char* p = s; *p != '\0'; p++) { … }

String literals in C++ are still stored this way, but convert to the string type:
string foo = "Hello";

or
string("Hello")

'H' 'e' 'l' 'l' 'o' '!' '\0'

11

Pointers and Reference

Parameters
Reference parameters are not pointers!
Reference parameters are not pointers!
Reference parameters are not pointers!

If you have a function
void foo(int &x) { … }

Inside foo, you cannot do
*x = 10; // incorrect!

You just do
x = 10; // correct

Sources of confusion:
 & denotes a

reference parameter

 & also used as
address-of operator

 References use
pointers “under the
covers”

12

9/18/2018

3

DYNAMIC ARRAY

ALLOCATION

13

Array Limitations in C++

Standard C++ does not let you do this*:

int sz;

cout << "What size do you need?" << endl;

cin >> sz;

int arr[sz]; // compiler error

…

14

*Strangely, later versions of C do allow this.
Confusingly, so does g++ (some versions).

Dynamic Array Allocation

So what if you know you’ll need an array, but
not the size (at compile time)?

int sz;

cout << "What size do you need?" << endl;

cin >> sz;

int *arr = new int[sz];

…

Note that new gives us a pointer to our memory.

15

Where Does Memory Come

From?

Stack

Heap

Data Segment

Text Segment

The stack: local variables, function
arguments, return values. Grows
“down”.

The heap: dynamically allocated
memory (using new). Grows “up”.

Global and static variables, constants.

Program code. Read only!

16

Data Segment/BSS

Global and static variables:

 Only ever one instance of them

 Get stored in their own special area

 Memory is pre-allocated, fixed in size

17

The Stack

 Holds “stack frames” aka “activation records”

 Each function call results in a new stack frame

 Each stack frame contains memory for:
 Local variables declared in the function

 Parameters passed into function

 Return address for function

 When the function is exited, all of this
memory is returned to the stack
automatically.

18

9/18/2018

4

The Heap

A big ol’ hunk of memory!

 Get pieces of it (“allocate memory”) using new

 Pieces stay allocated until explicitly released by
use of delete

Heap memory has a lifetime independent of scope
– it can be used after a function that created it
returns. You can’t do that with local variables!

19

Stack vs Heap

 Stack: local aka automatic variables and arrays:

int z;

foo f;

double darray[100];

 Heap: dynamically allocated objects and arrays:

int* p = new int;

foo* fp = new foo;

double* dptr = new double[100];

20

Memory for these is allocated on the
stack when they come into scope, is
returned to the stack when they go out
of scope (e.g., when function returns).

All of these live on the
heap. They will exist until
explicitly deallocated by
user code.

Dynamic Arrays

Allocate dynamic arrays using new:

double *darray = new double[1024];

Use the array pointer just like a regular array:

for (int j = 0; j < 1024; j++)

darray[j] = 0.0;

Always clean up (deallocate) when you are done:

delete[] darray;

21

DYNAMIC OBJECT

ALLOCATION

22

Pointers, Objects, and Dynamic

Memory

Consider this simple class:
class student {

public:

string name;

student() { ; }

student(string n) { name = s; }

void eat();

void sleep();

};

23

Creating New Objects: Stack

If we want to create a student locally:
student student1;
student student2("Kirk");

 These are created on the stack.
 They will vanish when exiting the current scope.

student1 is created using the default constructor:
student();

student2 is created using another constructor:
student(string s);

24

9/18/2018

5

Creating New Objects: Heap

We can also create single objects dynamically:
student* sp1 = new student;

student* sp2 = new student("Picard");

These are created on the heap.

They will live forever unless deleted:
delete sp1;

delete sp2;

Note, again, the two different constructors.

Note – no square
brackets when calling
delete on a single object.

Pointers!

25

Working With Object Variables

Consider:
student student1;

student* p = new student;

We know that we can do:
student1.name = "Sisko";

student1.eat();

What can we do with p?

26

Working with Object Pointers

We have:
student* p = new student;

We could just dereference (perfectly fine!)
(*p).name = "Janeway";

(*p).sleep();

C++ gives us another operator we can use directly:
p->name = "Archer";

p->sleep();

Note that this won’t work correctly:
*p.name = "Janeway";

The . has higher precedence than *

27

The Destructor

The counterpart to the constructor:
 No return type

 Name is ~ followed by class name, e.g.,
~student();

 Never takes a parameter!

The destructor is called automatically when:
 A local (stack allocated) object goes out of scope

 delete is called on a dynamically allocated object

28

Arrays of Objects

We can also use new to create arrays of objects:
int n = 100;
student* arr = new student[n];

The default constructor is used to create every object in the array.

Now we can do, e.g.:
for (int i = 0; i < n; i++)

arr[i].gpa = 4.0;

As with base types, we use delete[] on dynamically allocated arrays of
objects:

delete[] arr;

The destructor is called on every object in the array.

29

WRAPPING UP

30

9/18/2018

6

Dynamic Memory Don’ts

Never:
 Dereference a pointer which has not been set to valid

memory (using new or &)

 Dereference a pointer to memory which has already
been deallocated (a dangling pointer)

 Change or lose a pointer which is pointing to
dynamically allocated memory (or you won’t be able
to deallocate – this causes a memory leak)

 Use delete on a pointer which isn’t pointing to
dynamically allocated memory (e.g., a dangling or
NULL pointer)

31

Up Next

 Friday, Sept. 21

 Lab 5 – Memory

 APT 2 Due

 Monday, Sept. 24

 Midterm Review

 Lab 5 Due

 Wednesday, Sept. 26

 Midterm 1 (in class)

32

