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CSCI 262

Data Structures

5 – Pointers and Memory

NUMBERS

Prelude
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Positional Notation

Also called place-value notation

 Each place represents a power of the base

 Each numeral is multiplied by positional value

E.g., base 10 (decimal):

(4273)10 = 3 × 100 +  7 × 101 +  2 × 102 +  4 × 103
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Other Bases

Computer scientists tend to think in powers of 2:

 Hexadecimal (base-16) – use digits 0-9, a-f (or A-F)

(4273)10 = (10b1)16 = 1 × 160 +  11 × 161 +  1 × 163

 Octal (base-8) – mostly out of use now

(4273)10 = (10261)8 = 1 × 80 +  6 × 81 +  2 × 82 +  1 × 84

 Binary! (0s and 1s)

(4273)10 = (0001 0000 1011 0001)2

4

Bits and Bytes

Computers work with bits – 0’s and 1’s
 (Positive) integers are represented in base 2:

010 = 02, 
110 =     12, 
210 =   102, 
310 =   112, 
410 = 1002, 
510 = 1012,  etc.

 Computers organize bits into bytes – 8-bit chunks

 C++ data types are organized into bytes
 char uses 1 byte
 int uses 4 bytes
 double uses 8 bytes

 Get size of a variable/object type with sizeof:
int sz_of_dbl = sizeof(double);

The maximum (unsigned) 
integer we can store in n 
bits is 2n-1.
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POINTERS AND MEMORY
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Memory

Computer memory is organized as an indexed
array of bytes:
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It is traditional to represent 
memory as a vertical array.

All right thinking people start 
at the bottom and count up 

We say that the byte value 72 
is stored at address 0x1004…

Addresses (traditionally 
given in hexadecimal)
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Memory

However, from the 
programmer’s perspective, 
the value stored at 0x1004 
depends on the type.  It could 
be an int value (4 bytes)…
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Memory

Or the start of a string…
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Reference (address of) Operator &

Suppose this int value corresponds to the 
variable x:

…
int x = 1819043144;
…

We can obtain the address of x using the 
operator &:

…
cout << &x << endl; // prints 0x1004
…

(Try it!)

x

&x

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

11

Pointers

A pointer is a variable that stores an address:
…
int x = 1819043144;
int* p = &x;  // p now stores 0x1004

The type of the variable p is int*.
Note that int* is only for pointers to int; every 
type T has a corresponding pointer type T*.

You can write 
int* p;
int *p;
int * p;

- the compiler interprets them all the same.
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Dereference Operator *

You usually don’t want to see the address itself, 
but what is at the address – you can get the 
pointed-to value by using *:

…
int x = 1819043144;
int* p = &x;
cout << *p << endl;

The previous line outputs the same thing as:
cout << x << endl;
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So Where Do Pointers Live…?

In memory, of course!
…
int x = 1819043144;
int* p = &x;

And yes, you can declare pointers to 
pointers, ad infinitum…

int** pp = &p;
int*** q = &pp;
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Pointer Independence

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;
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Pointer Independence

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;
x = 6;
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x changed; 
p didn’t.
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Assigning Through *

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;
x = 6;

We can also assign through the * 
operator:

*p = 17;
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x changed; 
p didn’t.

17

Pointers As Variables

Pointers can be assigned like any other variable:
int x, y;

int* p = &x; // p points to x

int* q = p; // now q and p point to x

p = &y; // now p points to y, q to x

*q = 15; // x now stores 15
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The nullptr Pointer

 C++ defines a special keyword for pointers which 
do not currently point to anything: nullptr

int* p = nullptr;

 A null pointer is never a valid memory address:
int* p = nullptr;

cout << *p << endl; // crash
*p = 42; // also crash

 Prior to C++ 11, the value NULL was used instead 
of nullptr.  You will see a lot of code using NULL.
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http://xkcd.com/138/

POINTER NOTES
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Dereferencing Pointers

 Given a pointer p to some value:
*p dereferences p, is equivalent to the value.

 Suppose p points to an object or structure:
(*p).foo dereferences p and accesses the member foo
p->foo does the same thing

 In the next lecture we’ll see that array indexing is 
another kind of dereferencing:
p[i] == *(p + i)

(But we’ll have to explain pointer arithmetic first.)
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Multiple Pointer Declaration

An oddity of C/C++: we must do
int *p, *q; // we have to use * for both

even though int* is the type.

Otherwise:
int *p, q;   // p is an int*, but q is an int
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Up Next

Please read Chapter 7 in your textbook!

 Friday, Sept. 14

 Lab 4 – Memory

 Project 1 due

 Next assignment: TBD

 Monday, Sept. 17

 Pointers & Arrays

 Dynamic Memory Allocation
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