
9/11/2018

1

CSCI 262

Data Structures

5 – Pointers and Memory

NUMBERS

Prelude

2

Positional Notation

Also called place-value notation

 Each place represents a power of the base

 Each numeral is multiplied by positional value

E.g., base 10 (decimal):

(4273)10 = 3 × 100 + 7 × 101 + 2 × 102 + 4 × 103

3

Other Bases

Computer scientists tend to think in powers of 2:

 Hexadecimal (base-16) – use digits 0-9, a-f (or A-F)

(4273)10 = (10b1)16 = 1 × 160 + 11 × 161 + 1 × 163

 Octal (base-8) – mostly out of use now

(4273)10 = (10261)8 = 1 × 80 + 6 × 81 + 2 × 82 + 1 × 84

 Binary! (0s and 1s)

(4273)10 = (0001 0000 1011 0001)2

4

Bits and Bytes

Computers work with bits – 0’s and 1’s
 (Positive) integers are represented in base 2:

010 = 02,
110 = 12,
210 = 102,
310 = 112,
410 = 1002,
510 = 1012, etc.

 Computers organize bits into bytes – 8-bit chunks

 C++ data types are organized into bytes
 char uses 1 byte
 int uses 4 bytes
 double uses 8 bytes

 Get size of a variable/object type with sizeof:
int sz_of_dbl = sizeof(double);

The maximum (unsigned)
integer we can store in n
bits is 2n-1.

5 6

http://xkcd.com/953/

9/11/2018

2

POINTERS AND MEMORY

7

Memory

Computer memory is organized as an indexed
array of bytes:

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

It is traditional to represent
memory as a vertical array.

All right thinking people start
at the bottom and count up 

We say that the byte value 72
is stored at address 0x1004…

Addresses (traditionally
given in hexadecimal)

8

Memory

However, from the
programmer’s perspective,
the value stored at 0x1004
depends on the type. It could
be an int value (4 bytes)…

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

9

Memory

Or the start of a string…

‘o’

‘l’

‘l’

‘e’

‘H’

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

10

Reference (address of) Operator &

Suppose this int value corresponds to the
variable x:

…
int x = 1819043144;
…

We can obtain the address of x using the
operator &:

…
cout << &x << endl; // prints 0x1004
…

(Try it!)

x

&x

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

11

Pointers

A pointer is a variable that stores an address:
…
int x = 1819043144;
int* p = &x; // p now stores 0x1004

The type of the variable p is int*.
Note that int* is only for pointers to int; every
type T has a corresponding pointer type T*.

You can write
int* p;
int *p;
int * p;

- the compiler interprets them all the same.

x

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

12

9/11/2018

3

Dereference Operator *

You usually don’t want to see the address itself,
but what is at the address – you can get the
pointed-to value by using *:

…
int x = 1819043144;
int* p = &x;
cout << *p << endl;

The previous line outputs the same thing as:
cout << x << endl;

x

111

108

108

101

72

22

253

17

88

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

13

So Where Do Pointers Live…?

In memory, of course!
…
int x = 1819043144;
int* p = &x;

And yes, you can declare pointers to
pointers, ad infinitum…

int** pp = &p;
int*** q = &pp;

p

x

111

108

108

101

72

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

14

Pointer Independence

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;

p

x

111

108

108

101

72

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

15

Pointer Independence

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;
x = 6;

p

x

111

0

0

0

6

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

x changed;
p didn’t.

16

Assigning Through *

Suppose we change the value of x:
…
int x = 1819043144;
int* p = &x;
x = 6;

We can also assign through the *
operator:

*p = 17;

p

x

111

0

0

0

17

0

0

16

4

0x1009

0x1008

0x1007

0x1006

0x1005

0x1004

0x1003

0x1002

0x1001

0x1000

0x0FFF

x changed;
p didn’t.

17

Pointers As Variables

Pointers can be assigned like any other variable:
int x, y;

int* p = &x; // p points to x

int* q = p; // now q and p point to x

p = &y; // now p points to y, q to x

*q = 15; // x now stores 15

18

9/11/2018

4

The nullptr Pointer

 C++ defines a special keyword for pointers which
do not currently point to anything: nullptr

int* p = nullptr;

 A null pointer is never a valid memory address:
int* p = nullptr;

cout << *p << endl; // crash
*p = 42; // also crash

 Prior to C++ 11, the value NULL was used instead
of nullptr. You will see a lot of code using NULL.

19 20

http://xkcd.com/138/

POINTER NOTES

21

Dereferencing Pointers

 Given a pointer p to some value:
*p dereferences p, is equivalent to the value.

 Suppose p points to an object or structure:
(*p).foo dereferences p and accesses the member foo
p->foo does the same thing

 In the next lecture we’ll see that array indexing is
another kind of dereferencing:
p[i] == *(p + i)

(But we’ll have to explain pointer arithmetic first.)

22

Multiple Pointer Declaration

An oddity of C/C++: we must do
int *p, *q; // we have to use * for both

even though int* is the type.

Otherwise:
int *p, q; // p is an int*, but q is an int

23

Up Next

Please read Chapter 7 in your textbook!

 Friday, Sept. 14

 Lab 4 – Memory

 Project 1 due

 Next assignment: TBD

 Monday, Sept. 17

 Pointers & Arrays

 Dynamic Memory Allocation

24

