9/5/2018

CSCI 262
Data Structures

4 — Analysis of Recursive Algorithms,
Binary Search,

Merge Sort

CS@Mines

Analysis of

RECURSIVE ALGORITHMS

CSiaMines

Recursive Function Analysis

Here’s a simple recursive function which raises one
number to a (non-negative) power:

double power(double n, unsigned k)
if k == @ return 1

return n * power(n, k-1)

What is the cost of power()?

CS@Mines

Analyzing Power

= First, note that we want to analyze power in
terms of k, not n (why?)
= Now, ask the following two questions:

= How much work do we do within power(),
excluding the recursive call?

= How many calls do we make to power()?

CSiaMines

Analyzing Power

We can think of this another way by visualizing
our call stack, and ask these questions:

power() How much work at each level?
power()
) How many levels?
power()
power()
power()
CS@Mines

Analyzing Power

double power(double n, unsigned k)
if |k == @|return 1
return|n * power(n, k-1)

power()

power() How much work at each level?
powerl) One comparison, one multiplication
power()
power() How many levels?
power()

CSaMines

9/5/2018

Analyzing Power

double power(double n, int k)
if k == @ return 1
return n * power(n, k-1)

power()

power() How much work at each level?
power() One comparison, one multiplication
poverl) How many levels?

power()

power()

CS@Mines

Analyzing Power

Analysis:
2 operations per level * k levels
= 2k operations

In “Big O”, we drop constants, so that’s O(k).

CSiaMines

Analyzing Power 2

Suppose we try a different approach. This one is
doubly-recursive:

double power(double n, unsigned k)
if k == @ return 1
else if k == 1 return n
else return power(n, [k/2]) * power(n, |k/2])

The expression [x] is called the ceiling of x, and means that we round up to
the nearest integer. |x| is called the floor of x, and means we round down.

CS@Mines

Analyzing Power 2

* Now things are more complicated, because each call
to power turns into two more calls to power, etc.

* Instead of a stack, we can visualize this as a “call
tree”:

power()

| power() | | power() | | power() | | power() |

* How many calls to power here?

CSiaMines

Analyzing Power 2

= For these kinds of problems, easier to
approximate using an ideal case:
= Assume k is power of 2: k = 2P
= Now we divide k evenly in half at each level

= How many levels are in our tree?
= How much work is done at each level?

CS@Mines

Analyzing Power 2

1 call to power

2 calls to power power() power()

4 calls to power [Tpower() | [power() | [power(| [power(|

e OO0 O0ogod

CSaMines

9/5/2018

Analyzing Power 2

We do constant work in power.
So our work is less than or equal to:
some constant * (1 +2+4 + ... +k/2 + k)
= some constant * k * (1/k+ ... 1/4+1/2+ 1)

Thesum 1+ 1/2+1/4+..1/k<2,soour total is

< 2 * some constant * k = O(k), same as before!

CS@Mines

A Smarter Way

Here’s a better way:

double power(double n, unsigned k)
if k == @ return 1
double m = power(n, |k/2])
if k is even
return m * m
else
return m * m * n

CSiaMines

Correctness

double power(double n,
unsigned k)

if k == @ return 1

double m = power(n, |k/2|)
. if k is even
Try it: let k=11 return m * m
else

return m * m * n

Does this work?

power (n, 11)

m = power (n, 5)
k is odd so

return(m*m*n)=(n>*n5*n)=nit v

CS@Mines

Analyzing Power 3

Compare to previous version:
= Only 1 recursive call
= Still divide k in half at each step

Now our call “tree” is just a stack again...
But shorter than the first version’s stack!

CSiaMines

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2
before getting to 1?

So the cost of this version is O(log, k), much
better than O(k).

CS@Mines

Searching with

DIVIDE AND CONQUER

CSaMines

9/5/2018

Divide and Conquer

= Split problem into multiple smaller sub-
problems

= Solve the sub-problems recursively
= Recombine solutions afterwards

= When splitting/recombination can be done
efficiently, this approach is a winner

CSiaMines

Linear Search

Search for a value in a sorted list.
Obvious approach:

// find element k in sorted list x containing n elements
search(x, k)
for i =1ton
if x[i] == k return i
return NOTFOUND

Complexity: O(N)

CSiaMines

Binary Search

Search for a value in a sorted list.
// find element k in sorted list x containing n elements
binary_search(x, k)
if x is empty
return NOTFOUND
pivot = n/2 // look at element halfway through list
if x[pivot] ==
return pivot // if found, return
else if k < x[pivot] // else search left or right sublist
return binary_search(x[1 : pivot-1], k)
else

return binary_search(x[pivot+l : n], k)

CSiaMines

Binary Search Example

Search for a value in a sorted list.
Example: search for 11 in the list 1-15

[1[2]3]a]s[6]7]8]9]10]11]12]13]14]15]
CeEEERE
[[r0]u1]
[1]

CSiaMines

Analysis of Binary Search

Compare with pivot
Return or choose
new pivot
0(1)

N elements

0o(1)

kl

N/2 elements

I

Worst case: element not found
N/4 elements

Complexity: # of times we split the list in
two before getting to length 1 = log, N

o(1)

>_l.

CS@Mines

Another divide & conquer algorithm:

MERGE SORT

CSaMines

9/5/2018

Merge Sort

= Divide and Conquer algorithm for sorting
= Split input list in half
= Sort the halves
= Merge the sorted lists

merge_sort(x)
n = length(x)
if n == 1 return x
left = merge_sort(x[1 : n/2])
right = merge_sort(x[n/2 + 1 : n])
return merge(left, right)

CSiaMines

Merge Sort

= Divide and Conquer algorithm for sorting
= Splitinput list in half
= Sort the halves
= Merge the sorted lists

merge_sort(x)
n = length(x)
if n == 1 return x
left = merge_sort(x[1 : n/2])
right = merge_sort(x[n/2 + 1 : n])
return

CSiaMines

Merge Sort

merge(a, b)

Merge Sort Illustrated

// treat a, b as stacks or queues . 7 1 —_
3 a 4 3 2
x = empty list Lo — — (<]
1 7 7 4 3
oop 17 | L7 [4] [3]
if a is empty | 20] |20 L7 | 4|
append b to x, return x [9] |2 |2 6
else if b is empty 3 3] [20] 7]
append a to x, return x 8 I — g |
else if top(a) < top(b) e | | 8] 12] M1
append pop(a) to x B | |11] | 6] 7
else append pop(b) to x G | 2 8 —
return x L 6| [11] 2]
CSiaMines CSiaMines
Analysis of Mergesort
split= 0(1)
wese-or) RN
N elements
2 x Merge = O(N) ! n ! n
Y Y
N/2 elements N/2 elements
etc.
Interlude

Complexity: ?

CS@Mines

LOGARITHMS AND BIG O

CSaMines

9/5/2018

About Logarithms

= log, b=k
= For any b, log, x = log, x / log, 2

= Because “log, x” comes up so often, it is often
abbreviated to “Ig x” in computer science

CS@Mines

SORTING IN THE STL

CSiaMines

Sorting in Standard Library

= Sorting in the C++ standard library
= Works on random access iterators
= Works on vectors, strings, and arrays

#include <algorithm>
void sort(begin_iterator, end_iterator)

CS@Mines

sort example

Sorting a vector:
#include <algorithm>

vector<int> vec = {17, 42, 100, -3, 50};
sort(vec.begin(), vec.end());

for (int n: vec) cout << n << " "

Output:
-3 17 42 50 100

CSiaMines

Another sort example

Sorting a string:
#include <algorithm>
string s = "Hello, world!";

sort(s.begin(), s.end());
cout << s << endl;

CS@Mines

sort Notes

= Elements of container must be comparable using “<’
= Depending on application, may be able to overload “<* for items to be sorted

= Otherwise, have to supply a separate bool valued function as a third
parameter to sort:

bool rev(int a, int b) {
return b < a; // default comparison is a < b

}

int main() {
vector<int> foo = {16, 4, 23, 1, 2, 17, 6};

sort(foo.begin(), foo.end()); // {1, 2, 4, 6, 16, 17, 23}
sort(foo.begin(), foo.end(), rev); // {23, 17, 16, 6, 4, 2, 1}
return 0;
}
CSaMines

9/5/2018

Up Next

= Reading: Chapter 12.4 —12.6, 12.7 optional
= Friday, September 7

= lab3
= Monday, September 10

= Lab 3 due

= Project 1 — Image Editor due

= TBA

CS@Mines

