
9/5/2018

1

CSCI 262

Data Structures

4 – Analysis of Recursive Algorithms,

Binary Search,

Merge Sort

RECURSIVE ALGORITHMS

Analysis of

Recursive Function Analysis

Here’s a simple recursive function which raises one
number to a (non-negative) power:

double power(double n, unsigned k)

if k == 0 return 1

return n * power(n, k-1)

What is the cost of power()?

Analyzing Power

 First, note that we want to analyze power in
terms of k, not n (why?)

 Now, ask the following two questions:

 How much work do we do within power(),
excluding the recursive call?

 How many calls do we make to power()?

Analyzing Power

We can think of this another way by visualizing
our call stack, and ask these questions:

How much work at each level?

How many levels?

main()

power()

power()

power()

power()

power()

power()

Analyzing Power

double power(double n, unsigned k)

if k == 0 return 1

return n * power(n, k-1)

How much work at each level?

One comparison, one multiplication

How many levels?

main()

power()

power()

power()

power()

power()

power()

9/5/2018

2

Analyzing Power

double power(double n, int k)

if k == 0 return 1

return n * power(n, k-1)

How much work at each level?
One comparison, one multiplication

How many levels?
How many times can we subtract 1
before we get to k == 0?

main()

power()

power()

power()

power()

power()

power()

Analyzing Power

Analysis:

2 operations per level * k levels

= 2k operations

In “Big O”, we drop constants, so that’s O(k).

Analyzing Power 2

Suppose we try a different approach. This one is
doubly-recursive:

double power(double n, unsigned k)

if k == 0 return 1

else if k == 1 return n

else return power(n, ⌈k/2⌉) * power(n, ⌊k/2⌋)

The expression ⌈x⌉ is called the ceiling of x, and means that we round up to
the nearest integer. ⌊x⌋ is called the floor of x, and means we round down.

Analyzing Power 2

• Now things are more complicated, because each call
to power turns into two more calls to power, etc.

• Instead of a stack, we can visualize this as a “call
tree”:

• How many calls to power here?

power()

power() power()

power() power() power() power()

Analyzing Power 2

 For these kinds of problems, easier to
approximate using an ideal case:

 Assume k is power of 2: k = 2p

 Now we divide k evenly in half at each level

 How many levels are in our tree?

 How much work is done at each level?

Analyzing Power 2

power()

power() power()

power() power() power() power()

…

1 call to power

2 calls to power

4 calls to power

k calls

…

9/5/2018

3

Analyzing Power 2

We do constant work in power.

So our work is less than or equal to:

some constant * (1 + 2 + 4 + … + k/2 + k)

= some constant * k * (1/k + … 1/4 + 1/2 + 1)

The sum 1 + 1/2 + 1/4 + … 1/k < 2, so our total is

< 2 * some constant * k = O(k), same as before!

A Smarter Way

Here’s a better way:

double power(double n, unsigned k)

if k == 0 return 1

double m = power(n, ⌊k/2⌋)

if k is even

return m * m

else

return m * m * n

Correctness

Does this work?

Try it: let k = 11

power (n, 11)

m = power (n, 5)

k is odd so

return (m * m * n) = (n5 * n5 * n) = n11


double power(double n,
unsigned k)

if k == 0 return 1
double m = power(n, ⌊k/2⌋)

if k is even
return m * m

else
return m * m * n

Analyzing Power 3

Compare to previous version:

 Only 1 recursive call

 Still divide k in half at each step

Now our call “tree” is just a stack again…

But shorter than the first version’s stack!

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2
before getting to 1?

So the cost of this version is O(log2 k), much
better than O(k).

DIVIDE AND CONQUER

Searching with

9/5/2018

4

Divide and Conquer

 Split problem into multiple smaller sub-
problems

 Solve the sub-problems recursively

 Recombine solutions afterwards

 When splitting/recombination can be done
efficiently, this approach is a winner

Linear Search

Search for a value in a sorted list.

Obvious approach:

// find element k in sorted list x containing n elements

search(x, k)

for i = 1 to n

if x[i] == k return i

return NOTFOUND

Complexity: O(N)

Pseudocode usually
starts at index=1, not
index = 0

Binary Search

Search for a value in a sorted list.
// find element k in sorted list x containing n elements

binary_search(x, k)

if x is empty

return NOTFOUND

pivot = n/2 // look at element halfway through list

if x[pivot] == k

return pivot // if found, return

else if k < x[pivot] // else search left or right sublist

return binary_search(x[1 : pivot-1], k)

else

return binary_search(x[pivot+1 : n], k)

Binary Search Example

Search for a value in a sorted list.

Example: search for 11 in the list 1-15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pivot

9 10 11 12 13 14 15

9 10 11

11

Analysis of Binary Search

N elements

N/2 elements

N/4 elements

1

Worst case: element not found

Complexity: # of times we split the list in
two before getting to length 1 = log2 N

O(1)

Compare with pivot
Return or choose

new pivot
O(1)

O(1)

O(1)

MERGE SORT

Another divide & conquer algorithm:

9/5/2018

5

Merge Sort

 Divide and Conquer algorithm for sorting
 Split input list in half

 Sort the halves

 Merge the sorted lists

merge_sort(x)

n = length(x)

if n == 1 return x

left = merge_sort(x[1 : n/2])

right = merge_sort(x[n/2 + 1 : n])

return merge(left, right)

Merge Sort

 Divide and Conquer algorithm for sorting
 Split input list in half

 Sort the halves

 Merge the sorted lists

merge_sort(x)

n = length(x)

if n == 1 return x

left = merge_sort(x[1 : n/2])

right = merge_sort(x[n/2 + 1 : n])

return merge(left, right)

Merge Sort

merge(a, b)
// treat a, b as stacks or queues
x = empty list
loop

if a is empty
append b to x, return x

else if b is empty
append a to x, return x

else if top(a) < top(b)
append pop(a) to x

else append pop(b) to x
return x

Merge Sort Illustrated

4

7

20

9

3

8

11

2

6

8

11

2

6

4

7

20

9

3split recursive sorts

2

6

8

11

3

4

7

9

20
merge

22

3

2

3

4

2

3

4

6

7

8

9

11

20

Analysis of Mergesort

N elements

N/2 elements

2 x Split = O(1)
2 x Merge = O(N)

etc.

Split = O(1)
Merge = O(N)

N/2 elements

Complexity: ? LOGARITHMS AND BIG O

Interlude

9/5/2018

6

About Logarithms

 logb bk = k

 For any b, log2 x = logb x / logb 2

 Because “log2 x” comes up so often, it is often
abbreviated to “lg x” in computer science

This shows that the base
doesn’t matter in “big O” –
all bases are just a constant
factor from base 2.

SORTING IN THE STL

Sorting in Standard Library

 Sorting in the C++ standard library

 Works on random access iterators

 Works on vectors, strings, and arrays

#include <algorithm>

void sort(begin_iterator, end_iterator)

33

sort example

Sorting a vector:

#include <algorithm>

…

vector<int> vec = {17, 42, 100, -3, 50};

sort(vec.begin(), vec.end());

for (int n: vec) cout << n << " ";

Output:

-3 17 42 50 100

34

Another sort example

Sorting a string:

#include <algorithm>

…

string s = "Hello, world!";

…

sort(s.begin(), s.end());

cout << s << endl;

35

sort Notes

 Elements of container must be comparable using “<“
 Depending on application, may be able to overload “<“ for items to be sorted
 Otherwise, have to supply a separate bool valued function as a third

parameter to sort:

bool rev(int a, int b) {
return b < a; // default comparison is a < b

}

int main() {
vector<int> foo = {16, 4, 23, 1, 2, 17, 6};

sort(foo.begin(), foo.end()); // {1, 2, 4, 6, 16, 17, 23}
sort(foo.begin(), foo.end(), rev); // {23, 17, 16, 6, 4, 2, 1}
return 0;

}

36

9/5/2018

7

Up Next

 Reading: Chapter 12.4 – 12.6, 12.7 optional

 Friday, September 7

 Lab 3

 Monday, September 10

 Lab 3 due

 Project 1 – Image Editor due

 TBA

