

Analyzing Power 3 How high is the stack? How many times can you divide a number by 2 before getting to 1? So the cost of this version is O(log₂ k), much better than O(k). CS@Mines

Divide and Conquer Linear Search Split problem into multiple smaller sub-Search for a value in a sorted list. Obvious approach: Solve the sub-problems recursively // find element k in sorted list x containing n elements Recombine solutions afterwards search(x, k) Pseudocode usually for i = 1 to n When splitting/recombination can be done if x[i] == k return i index = 0 return NOTFOUND efficiently, this approach is a winner Complexity: O(N) CS@Mines CS@Mines

problems

Up Next

- Reading: Chapter 12.4 12.6, 12.7 optional
- Friday, September 7
 - Lab 3
- Monday, September 10
 - Lab 3 due
 - Project 1 Image Editor due
 - TBA

CS@Mines