
8/28/2018

1

CSCI 262

Data Structures

3

Selection Sort

Introduction to Analysis of Algorithms
SORTING

Getting things in order

Sorting

 Input: a list of elements, e.g. integers

 Output: a list of the input elements in sorted order

Why do we study this problem?

 Teaching example
 Algorithm design

 Algorithm analysis

 Sorting is also useful for all sorts of applications!

3

Selection Sort

 Input: a list of elements, e.g. integers

 Output: a list of the input elements in sorted order

 A simple solution:

 Find the minimum element in the list

 Swap it with the first element in the list

 Sort the sublist following the first element

 This sorting algorithm is named selection sort.

4

Selection Sort Illustrated

5

5 7 2 10 3 1 6

Find min element

1 7 2 10 3 5 6

Swap with first element

7 2 10 3 5 61

Sort the remaining elements

Selection Sort Code

// for vectors of int
void selection_sort(vector<int> &vec) {

int n = vec.size();
for (int left = 0; left < n; left++) {

int right = left;
for (int j = left + 1; j < n; j++) {

if (vec[j] < vec[right]) right = j;
}
swap(vec[left], vec[right]);

}
}

6

8/28/2018

2

Swap Code

// exchange two int values

void swap(int &a, int &b) {

int tmp = a;

a = b;

b = tmp;

}

This function is actually already available in the
standard library; #include <algorithm>

MEASURING WORK

How much?

How Much Work in Selection Sort?

 Difficult to actually count CPU cycles –
 Differs by CPU
 Differs by compiler
 Lots of noise factors: caching, context switching, etc.

 Simplification: just measure comparisons and
swaps
 Ignore loop counter updates, etc.
 We’ll see later why we can get away with this

 Let’s count (only somewhat carefully):
 Use a vector of size 10
 Later, generalize to size n

Analyzing Selection Sort

void selection_sort(vector<int> &vec) {

int n = vec.size();

for (int left = 0; left < n; left++) {

int right = left;

for (int j = left + 1; j < n; j++) {

if (vec[j] < vec[right]) right = j;

}

swap(vec[left], vec[right]);

}

}

10

Analyzing Selection Sort: 1st Loop

On first loop:

 Compare min element with each of 9
elements: cost = 9

 Do 1 swap: cost = 1

Total cost: 10

Analyzing Selection Sort: 2nd Loop

On second loop:

 Compare min element with each of 8
elements: cost = 8

 Do 1 swap: cost = 1

Total cost: 9

8/28/2018

3

Analyzing Selection Sort: Last

Loop

In the end, we have a list of size 1 left and don’t
have to do any work!

So work is 10 + 9 + 8 + … + 1 + 0

= 55

n

Now let’s generalize to vectors of size n

First loop: n – 1 comparisons, 1 swap: cost = n

Second loop: cost = n – 1

…

Cost: n + (n – 1) + (n – 2) + … + 1 + 0

This is a famous sum!

Arithmetic Series

Memorize this!

𝑖=0

𝑛

𝑖 =
𝑛 𝑛 + 1

2

That is,

0 + 1 + 2 +⋯+ 𝑛 =
𝑛2 + 𝑛

2
.

How to Solve σ𝑖=0
𝑛 𝑖

0 + 1 + … + n-1 + n

+ n + n-1 + … + 1 + 0

= n + n + … + n + n

Write the sum twice, once forwards and once backwards; then sum the two:

How many n’s are there in the sum? Answer: n+1.

Since we took twice the summation, we have to divide by 2,
Thus we have

n(n+1)/2.

Can also prove easily using induction, geometry, …

Visual Analysis

Counting based on code can be a pain;

Sometimes, a visual approach is simpler:

17

5 7 2 10 3 1 6Original list

5 7 2 10 3 1 6Elements “touched” in first loop iteration

1 7 2 10 3 5 6Elements “touched” in second loop iteration

1 2 7 10 3 5 6Elements “touched” in third loop iteration

…

1 2 3 5 6 7 10Last iteration

n

n - 1

n - 2

1

Cost: O(1 + 2 + … + n)

ALGORITHMIC ANALYSIS

8/28/2018

4

“Big O”

Big O notation:

O(n) measures asymptotic complexity of algorithm

Don’t worry about the fancy language for now – this will
be explained in CSCI 406!

What is important:

 In Big O, lower order terms and constants don’t matter

 Only interested in how functions grow with size of n

Simplifying

Typically use the simplest term in expression:
 E.g., lower order polynomials can be ignored because they

are completely dominated by higher order polynomials
 O(n) not O(n + c)

 O(n2) not O(n2 + n + c)

 Ignore constants
 O(n) not O(3n)

 O(n) not O(n/2)

Dominance relations (here a > b means a dominates b):
n! > 3n > 2n > n3 > n2 > n log n > n > log n > 1

Practice

Simplify the following:

O(n3 + 4)

O(12n2 – n + 1)

O(2n + n2)

O(n + n2 + n log n)

Technicalities (for the curious)

 Defined:

f(n) = O(g(n)) means f(n) ≤ c g(n) for some c as n →∞

 The asymptotic complexity of f is upper
bounded by g

More formally, f(n) = O(g(n)) if there exists c, n0 such that f(n) ≤ c g(n) for
all n > n0.

Proof Sketch (for the curious)

(Just for show: not on any exams or homework!)
Prove: 3n2 + n/4 + 1 = O(n2)
Find c, n0 such that (3n2 + n/4 + 1) ≤ c n2 for all n ≥ n0

Choose c = 4, n0 = 2

Inductive proof:
 Base case: 3(22) + 2/4 + 1 = 13½ ≤ 16 = 4(22)
 Induction:

 Suppose 3n2 + n/4 + 1 ≤ 4 n2

 Show for n + 1:
3 (n + 1)2 + (n + 1)/4 + 1 ≤ 4 (n + 1)2

3 (n2 + 2n + 1) + n/4 + 1/4 + 1 ≤ 4 (n2 + 2n + 1)
3n2 + 6n + 3 + n/4 + 1/4 + 1 ≤ 4n2 + 8n + 4
(3n2 + n/4 + 1) + 6n + 3¼ ≤ (4n2) + 8n + 4

□

Asymptotic Complexity

Comparison

8/28/2018

5

Big-O Comparisons Why We Care 1

n 10 100 1000 106 109

log(n) 1 2 3 6 9

n 10 100 1000 1000000 1000000000

n log(n) 10 200 3000 6 x 106 9 x 109

n2 100 104 106 1012 1018

2n 1024 ~1030 ~10300 Forget it!

Comparison of different orders of functions as size of input n:

Why We Care 2

Assuming 2 x 1010 operations/second

(approximately the FP performance of a typical CPU c. 2011)

Datasets of size 106 and
above are commonplace!

n 10 50 100 106 109 1012

log(n) < 1 ns < 1 ns < 1 ns 1 ns 1 ns 2 ns

n < 1 ns < 1 ns < 1 ns 50 μs 50 ms 50 s

n log(n) < 1 ns < 1 ns 1 ns 300 ms 450 ms 10 min

n2 <1 ns 125 ns 500 ns 50 s 1.6 years 1.6 million
years

2n 50 ns 16 hours 1.5 trillion
years

of unique URLs seen by
Google indexer c. 2010

Up Next

 Friday, August 31

 Lab 2

 APT 1 due

 Project 1 assigned

