12/2/2018

CSCI 262
Data Structures

20 — Inheritance

CS@Mines

Inheritance Overview

= Classes can inherit from other classes
= Properties (variables)
= Behavior (methods)

= |nheritance serves various functions
= Modeling of class relationships
= Code reuse
= Subtyping/polymorphism

CSiaMines

Inheritance Example
Superclass aka “base” or “parent” class.

Subclass aka “derived” or
“child” class.

class animal {
public:

str‘lng name; This signifies that dog inherits from

void print(); animal. (The “public” just means all
}; members have the same visibility in
the subclass as in the superclass.)

class dog : public animal {
public:
string breed;

}s

CS@Mines

Inheritance: Modeling
Relationships

class cat : public animal {

}s

We say cat “is a” type of animal*

*This language can lead to bad modeling choices. E.g., a square “is a” type of
rectangle. If we model this way in C++, a natural choice is to give rectangle
properties of height and width. If square inherits from rectangle, it gets these two
independent properties, but in a square, they must be identical. So not every “is
a” relationship in real life makes sense in C++!

CSiaMines

Inheritance: Properties

Note that animal defined a property:
string name;

This is inherited by dog and cat.
We can use name in dog and cat because it was
defined by the superclass:

dog d;

Eat c;

d.name = "Rex";

c.name = "Fluffy";

CS@Mines

Inheritance: Properties

Note that dog defines a new property,

string breed;

This is unique to dog; we can’t use it in animal
or cat:
dog d;
cat c;
d.breed = "Dachshund";
C.breed—=—"Fabby"; error!

CSaMines

12/2/2018

Inheritance: Behavior

Behaviors can also be inherited, leading to very
powerful code reuse.
E's.,

void animal::print() {

cout << "My name is " << name << ". ";
cout << endl;

1
Defines a reasonable print behavior for cat and
dog.

CS@Mines

Inheritance: Overrides

If we don’t like the superclass behavior, we can change it in the
subclass:
class dog : public animal {
public:
string breed;
void print();

Y
void dog::print() {
cout << "My name is " << name << "." << endl;
cout << "I am a " << breed << "." << endl;
iy
You cannot:

— Override properties
— Change the return type of methods

CSiaMines

Inheritance: Calling on the Super

We can improve our print() method slightly by
reusing the superclass behavior:

dog: :print() {
animal::print();
cout << "I am a

" << breed << "." << endl;

CS@Mines

Example So Far

dog d;

Bat c;

d.name = "Rex";

.breed = "Dachshund";
.name = "Fluffy";

.print(); | encourage you to try these code
.print(); snippets for yourself, and modify
them to see what else you can do.

an n a

Output is:
My name is Fluffy.
My name is Rex.
I am a Dachshund.

CSiaMines

Inheritance: Polymorphism I

Note we can now use dogs and cats wherever
we would use an animal:

void print_animal(animal &) { a.print(); }

print_animal(c);
print_animal(d);

What does this output?
(Hint: it is different from previous page!)

CS@Mines

Inheritance: Polymorphism II

Let’s fix this:
class animal {
public:
string name;
virtual void print();

};

print_animal(c);
print_animal(d);

This gives us the same output as:
c.print();
d.print();

CSaMines

12/2/2018

Inheritance: Polymorphism III

Another approach, same output:
animal* A[2];
A[@] = &c;
A[1] = &d;
for (int j = @; j < 2; j++) A[j]->print();

Note, how this is different:
animal a = d; // default copy constructor called!
a.print();

Output is:

My name is Rex.

CS@Mines

Polymorphism

= The word polymorphism means having many
forms. Typically, polymorphism occurs when
there is a hierarchy of classes and they are
related by inheritance.

= C++ polymorphism means that a call to a member
function will cause a different function to be
executed depending on the type of object that
invokes the function.

Polymorphism in C++ - tutorialspoint.com. (n.d.). Retrieved October 25, 2016, from
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

CSiaMines

Inheritance: Abstract Classes

An abstract class is one which:
= Contains at least one “pure virtual” method
= Cannot be instantiated

= Can only be used via inheritance
class animal {
public:
string name;
void print();
virtual void speak() = 0;
.
3 Notation to designate as

a pure virtual method.

CS@Mines

Abstract Classes II

Pure virtual methods are not defined in the abstract class.

(Non-abstract) children of abstract classes must implement
any pure virtual methods.

However, we can use pure virtual methods in the abstract
class:
void animal::print() {
cout << "My name is " << name << ". ";
speak();
cout << endl;

CSiaMines

Inheritance: Constructors

= Normally, a subclass calls the default constructor
(i.e. no parameters) of the superclass before
executing its own constructor.

= You can force the subclass to call a different
constructor using this form in the definition:

animal::animal(string nm) { name = nm; }

dog: :dog(string n, string b) : animal(n) {

breed = b ;
Superclass constructor call

CS@Mines

Final Example

class animal {

public:
string name;
virtual void print();
virtual void speak() = ©;

5

class dog : public animal {
public:
string breed;
void print();
void speak() { cout << "Woof!"; }

1

class cat : public animal {
public:
void speak() { cout << "Meow."; }

1

CSaMines

12/2/2018

Final Example II

void animal::print() {
cout << "My name is " << name << ". "
speak();
cout << endl;

}
void dog::print() {

animal::print();

cout << "I am a " << breed << "." << endl;
}

void print_animal(animal& a) { a.print(); }

CS@Mines

Final Example III

int main() {
dog d;
cat c;
d.name = "Rex";
d.breed = "Dachshund";
c.name = "Fluffy";

print_animal(c);
print_animal(d);

return 0;

CSiaMines

Final Example Output

My name is Fluffy. Meow.
My name is Rex. Woof!
I am a Dachshund.

CS@Mines

Up Next

= \Wednesday, December 5
= Final Review

CSiaMines

