8/19/2018

CSCI 262
Data Structures

2 - Review

CS@Mines

Welcome Back

What you learned in CSCI 261 (or equivalent):

= Variables = Functions

= Types = Recursion

= Arrays = Classes & Objects
= Expressions = Streams

= Conditionals = Vectors

= Branches & Loops = Strings

You remember all of this, right? ©

CSiaMines

Hello, Let’s Review

Here’s a simple C++ program:

#include <iostream>

using namespace std;

Hello, Let’s Review

This tells the compiler that it should
_— include symbols and types from the
standard library iostream.

#include <iostream> <

using namespace std; <

Function ssignment
Return type ame parame operator
int main.() { i) e, [int main() { Variable Litera
string hello = "Hello, world!"; Specmcaw string hello = "Hello, world!";
cout << hello << endl; the cout << hello << endl:
. required ’
return 0; o return 0;
} main L }
Type Return Operator
CS@Mines CS@Mines
How to Review
= Remaining slides:
= Some new material — e.g., function overloading
= Mostly review
= Your responsibility:
. Start: th “fun”!
= Go through all the slides that follow g
= Note any questions on old or new concepts FUNDAMENTALS
= Try to learn concept from textbook
= Ask instructor if you still have questions!
CS5@Mines CS@Mines

8/19/2018

Variables

Declaration:
int x;

Use in expressions:
X + 10

Set via assignment operator:

Types

= Basic types

= |nteger types:
= int:42,-99, 103482039
= unsigned: like int, but non-negative values only
= char:'k'

= Floating point types:
= double: 3.14159, 4.5e3, -0.0001

= Boolean type:

X =4 = bool : true, false
Declare and initialize: ® Pointers
int x = 42; ® Arrays
= Class/struct types
CS@Mines CS@Mines
Expressions Operators

Working definition: anything with a value is an expression:
= Variables
= X
= |ndexed array variables
= arr[10]
= Literals
=42
= "Hello"
= true
= Function calls returning a value
= sqrt(17)
= Arithmetic/logical expressions using operators (next page)

CS@Mines

Operators are like functions, but expressed in a
more “mathematical” format:

The addition operator. Itis a
on either side.

e., it acts on the two

x+4

The two operands must be expressions. Here, one is a variable, and one is a literal.

he logical negation operator. ltisa

la

CSiaMines

Operators & Expressions

= Arithmetic expressions
=4 +7 / 3.0 Mixed type expressions allowed due to numeric tyr
= (x * sqrt(2) +1) %y

= |ogical expressions:
= count ==
"a || b&& Ic

// true if count = 0
// a or b and not c

CS@Mines i

Expressions and Types

Anything with a value also has a type!
= Literal types are inferred from their formats:

-> int
“Hello" -> char[] (not string - more soon)
true -> bool

® Variables/indexed array variables get the type of the variable:
int x;
x -> int

= Function definitions specify return type
double sqrt(double n) { .. }

sqrt(42) -> double
= Operator expressions: type depends on operator and operands
int x = 1;
x + 17 -> int
X +17.6 -> double
string a = "Hello", b = "world";

a+b -> string

CSaMines

Loops

What if we want to print “Hello, world!” three times?

Initial value

fori

Loop

update

for (int i = 1; i <= 3; i++) {
cout << i << " Hello, world!" << endl;

Output:

1 Hello, world!
2 Hello, world!
3 Hello, world!

CS@Mines

Another Loop

int i = 3;

while (i > @) {
cout << i << " Hello, world!" << endl;
i--5

Output:

3 Hello, world!
2 Hello, world!
1 Hello, world!

CSiaMines

Conditionals

if (true-false-expression) {
true-block

}

else {
false-block

CS@Mines

Hello, if?

Let’s modify Hello to respond to an input:

char answer;
cout << "Say (H)ello or (G)oodbye?" << endl;
cin >> answer;

if (answer == 'H')
cout << "Hello, world!" << endl;
} else {

cout << "Goodbye, world!" << endl;

}
What happens if the user enters “h” instead of “H”?

CSiaMines

Arrays

int numbers[3];
numbers[1] = 14;

numbers[2] = -3;
numbers[3] = 7093; Oops! What’s wrong here?

CS@Mines

Arrays

int numbers[3];
numbers[0] = 14;

numbers[1] = -3;
numbers[2] = 7093;

Let’s print out the numbers in the array.
What about in reverse order?

CSaMines

8/19/2018

8/19/2018

Loops on Arrays

int numbers[] = {14, -3, 7093}; AT initialization —only

when array is declared!

for (int i = 0; i < 3; i++) {
cout << numbers[i] << endl;

for (int i = 2; i >=0; i--) {
cout << numbers[i] << endl;

CS@Mines

Even more “fun”!

FUNCTIONS

CSiaMines

Functions

We’ve seen one function:
int main() { .. }

Here’s another:

int print_it(string msg) {
cout << msg << endl;
return msg.length(Q);

CS@Mines

Hello Functions!

Asilly program.

#include <iostream>
#include <string>
#include <cmath>

using namespace std; Note, we have to declare a function before

we use it. Here we used a function prototype
int print_it(string); declaration; alternately we could have just
B i) ¢ defined the entire function here

int n;
double nroot;

n = print_it("Hello, world!");

nroot = sqrt(n);

cout << "The square root of the number of characters printed is *;
cout << nroot << endl;

return 0;

int print_it(string msg) {
cout << msg << endl;
return msg.length();

CSiaMines

Recursion

Functions can call themselves.

void print_n_times(string s, int n) {
if (n == @) return;
cout << s << endl;

Base case. Very important!

pr‘int_n_times (S, n - 1) H Recursive call. Note that
the parameter n moves
} towards the base case
condition.

CS@Mines

Function Overloading

= C++ allows multiple functions of the same name:
void print_it(int x) {
cout << "an integer: " << x << endl;

}

void print_it(string s) {
cout << "a string: " << s << endl;
}

= What to call based on the parameter list
= So parameter lists must be different for each overload

= Can get confusing when mixed with type promotion:
print_it(3.1415); // what does this do?

CSaMines

8/19/2018

Default Parameters

Alternative when one overload i just a specialized version of another:

// prints n times, or just once if n omitted
void print_n_times(string s,) {
for (int j = @; j < n; j++) {
cout << s << endl;
}
}

With the above, we can do:
print_n_times("Hello", 10); // prints Hello 10 times
or
print_n_times("Goodbye"); // prints Goodbye once
Rules:
= Cannotomit earlier parameters, supply later ones
= Cannot overload if parameter list is interpretable as call to function with default params omitted,
e.g., cannot also define
void print_n_times(string s) { .. }

CS@Mines

Pass by Value or Reference

What does this program print?

void set_to_zero(int x) {
X = 0;

int main() {
int n = 42;
set_to_zero(n);
cout << n << endl;

CSiaMines

Passing Parameters by Reference

void set_to_zero(int &x) {
X = 0;

int main() {
int n = 42;
set_to_zero(n);
cout << n << endl;

CS@Mines

The Stack

* Holds “stack frames” aka “activation records”
* Each function call results in a new stack frame

Each stack frame contains memory for:
— Local variables declared in the function

— Arguments passed into function
— Return address for function

* When the function is exited, all of this
memory is returned to the stack
automatically.

CSiaMines

Function Call Example

void quotient(double num, double den) {
double q = num / den;
cout << num << '/' << den << " is " << q << endl;

}

void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

int main() {
int a, b;
cout << "Please enter 2 non-zero integers: ";
cin >> a >> b;
print_quotients(a, b);
return 0;

CS@Mines

Example

At start of main() Stack

main

inta=?
intb=?
return address

Top of Stack

int main() {
int a, b;
cout << "Please enter 2 non-zero integers: ";
cin 5> a >
print_quotients(a, b);
return 0;

CSaMines

8/19/2018

Example

After getting input: Stack
> Please enter 2 non-zero m
integers: 7 2 inta=7

intb=2

return address

Example

Top of Stack

int main() {
nt a, b;
cout << "Please enter 2 non-zero integers: ";
cin >> a >> b;
print_quotients(a, b);

At beginning of call to Stack
print_quotients: :
main
inta=7
intb=2

> Please enter 2 non-zero
return address

integers: 7 2
print_guotients
intx=7
inty=2
return address

Top of Stack

void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

return 0;
} iy
CS@Mines CSiaMines
Example Example
Stack Stack
At beginning of first call Ei At end of call to quotient: in
to quotient: liga=7 inta=7
inth=2 inth=2
return address return address
~ print_guotients print_quoti
g PleaseAenter 2 non-zero intx=7 > Please enter 2 non-zero inT;{ 7u0t|ents
integers: 7 2 . integers: 7 2 A _
inty =2 > 7/2 is 3.5 hiy=2
return address : return address
quotient quotient
double num =7 double num =7
double den =2 double den =2
void quotient(double num, double den) { doubleq="? void quotient(double num, double den) { doubleq=3.5
double q = num / den; double q = num / den;
Cout << num << '/ << den << " 15 * << q < end; | | F€tUrn address cout << num << /' << den < " is " << q << endl; | | return address
¥ }

Top of Stack

CSiaMines

Top of Stack

CSiaMines

Example

Example

Stack

After return from call to o
quotient: inta=7

inth=2

return address
> Please enter 2 non-zero print_quotients
integers: 7 2 intx=7
B7/2 is 3.5 inty=2

return address

Top of Stack

Void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

CS@Mines

Stack
At beginning of second .
call to quotient: inta=7
inth=2
return address
> Please enter 2 non-zero print_guotients
integers: 7 2 intx=7
B/2 is 3.5 inty=2
return address
quotient
double num =2
double den =7

void quotient(double num, double den) { 5
double q = num / den; doubleq =7
cout << num << '/’ << den << " is * << g << endl; return address

)

Top of Stack

CSa@Mine

8/19/2018

Example Example
Stack Stack
At end of second call to o After return from second -
quotient: inta=7 call to quotient: inta=7
intb=2 intb=2
return address return address
> Please enter 2 non-zero print_guotients > Please enter 2 non-zero print_quotients
integers: 7 2 intx=7 integers: 7 2 intx=7
BZ/2 is 3.5 inty=2 BZ/2 is 3.5 inty=2
> 2/7 is 0.285714 return address > 2/7 is 0.285714 return address
quotient Top of Stack
double num =2
1 3 double den =7 : -
B e e < 7 e e double q = 0. 285714 Rl
\ cout << num << '/' << den << " is " << q << endl; return address quotient(y, x);
CS@Min Top of Stack CSiaMines
Example
Stack
After call to :
) . main
print_quotients: inta=7
intb=2
return address
> Please enter 2 non-zero Top of Stack
integers: 7 2
BZ/2 is 3.5
> 2/7 is 0.285714
CS@Mines CSiaMines
Objects Classes

C++ is an object-oriented (O0) language.
What'’s an object?

A working definition:
An object is a package of data with associated behavior.

More specifically, we say that an object has properties
(fields, attributes, data, state), and that it has
associated methods (functions).

CS@Mines "

= Objects also have type. Objects of the same type:
= Have a common set of properties and methods
= Used in a similar manner to primitive types.

= Types are (usually) modeled by classes. Classes
formally define the properties and methods.

= Essentially, defining classes is a way to add new types
to C++.

(Classes do some other neat things, too, but we’ll get to that later.)

CSaMines

8/19/2018

Classes in C++

Classes are created via a class declaration:

class student {
public:
string name;
string year;
double gpa;
bool is_hungry;

student();

void eat();
void sleep();
void program(int);

CS@Mines

Defining Member Functions

The declaration only gave the member function
signatures (prototypes); we still have to write the
functions themselves:

void student::eat() {
is_hungry = false;

}
void student::program(int assignment) {
if (grade(this, assignment) == 'A') gpa++;
Etc.
CS@Mines

Using Objects in C++

= Objects can be created just like chars, ints, etc.:
student s;

= Properties are referenced by the “.”” operator:
s.name = "April";
s.gpa = 4.0;
double d = s.gpa;
= Methods are invoked on objects also using “.”:
s.sleep();

CS@Mines

Some Notes on Visibility

= Many philosophies around visibility
= “All data should be private”
= Partly a matter of style

= Rule of thumb:
= |fitis specific to the implementation, it is private
= Else, it is public

= Not all OO languages have visibility modifiers.
(But they all have commenting systems!)

CSiaMines

Input/Output

STREANMS

CS@Mines

Streams

= Console 1/0: #include <iostream>
cin >> some_var;

cout << expression << endl;

string s;

getline(cin, s); // must #include <string>

= Filel/O: #include <fstream>
ifstream fin("words.txt");
fin >> some_var;
getline(fin, s);

ofstream fout("output.txt");
fout << expression << endl;

= We'll also learn about stringstream objects (later).

CSaMines

8/19/2018

VECTORS

CS@Mines

Arrays and Vectors

Arrays:
int foo[10];
for (int j

= < 10; j++)
foo[j]

0; j
=3

Vectors:
#include <vector>

Gives an initial size to the
Vector.

vector<int> foo(10);
for (int j = 0; j < 10; j++)
foo[j] = j; // = foo.at(j) =3

CSiaMines

Do More with Vectors

E.g. you can append to a vector — it automatically
resizes:

vector<int> foo;
for (int j = 0; j < 10; j++) {
foo.push_back(j);

foo contains:
{e, 1, 2, 3, 4, 5, 6, 7, 8 9}

And so much more: see Help page of course website for C++ documentation websites.

CS@Mines

Something New-ish

C++ 11 added a new type of for loop:

vector<int> numbers = {14, -3, 7093};

for (int x: numbers) {
cout << x << endl;

¥

CSiaMines

STRINGS

CS@Mines

About Strings

In C/C++, the literal "Hello" is called a string.
Itis of type char[] (achararray).

Confusingly, C++ defines a new type, string.

A string is mostly interchangeable with a string (which in C++ is called a
“C-string”).

But, you can do more with string objects:

#include <string>

string foo = "Hello"; // note assignment of string to string
string bar = "World"; // actually implicit constructor call
string hello = foo + ", " + bar + "!";

if (foo == bar) { .. } // test for equality works with string

CSaMines

8/19/2018

More About Strings

Know/learn the string interface!

— See Help page of course website for C++
documentation websites

— Some string methods you should know:
length operator[]
size operator+
find operator+=
substr relational operators

CS@Mines

Up Next

= Please continue to review chapters 1 -6, 8, 9
in your textbook
= Friday, August 24
= Lab 1 - Compile
= APT 1 assigned
= Monday, August 27
= Abstraction
= Lab 1 due

CSiaMines

10

