
11/27/2018

1

CSCI 262

Data Structures

19 – Hashtables

Review: Sets and Maps

 Data structures for holding unique keys

 Sets just hold keys

 Maps associate keys with values

 Principal operations:

 find() - lookup key/value in set/map

 insert() - put a new key/value into set/map

 erase() - remove a key/value from set/map

O(1) Table Lookups

 Suppose set keys are integers in range 0-99:

 What is easiest way to store keys?

 What is the “big-O” complexity of find()?

 Arguably, all keys in a computer are numbers!

 However, range may be very large (too large!)

 Also, have to ensure uniqueness of number
conversion for different keys

Mod

• With the range of our keys being so large
(infinitely large?) how do we fit into a table?

• We could just mod key’s value by table size to
get index…

Basic Hashtable Idea

 Convert key to an integer (called a hash code)

 Take hash code, mod table size

 Store key at resulting index

It’s that easy, except for collisions!

Sometimes “mod table size”
is implicit in the term “hash
code”, but typically the
computations are separate.

Very Simple Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use key as hash code

49

3

16

4

3

2

1

0

Insert 3

Insert 16

Insert 49

Insert 31… uh oh

11/27/2018

2

Collision Resolution

Collisions:

 Table size typically << size of universe of keys

 Many keys will hash to same index!

 Collisions are inevitable (see Birthday Paradox)

Different schemes for dealing with collisions:

 Chaining

 Open addressing (not covered today)

Chaining

 Basic idea: store linked list at each index
 When finding:

 If null pointer at index, return NOT FOUND
 Else, search every node in linked list for item

 When inserting:
 First do a find() – if item is in linked list, do nothing
 If not present in list, insert new item into list

 When erasing:
 Find item
 If found, remove from linked list

49

3

16

Updated Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use key as hash code

4

3

2

1

0

Insert 3

Insert 16

Insert 49

Insert 31

31

Analysis of Hashing with Chaining

 Best Case (N entries, table size >= N):
 Every entry occupies a unique location
 Linked lists are all empty or have a single node
 All operations thus O(1)

 Worst case?
 N entries occupying same location
 find() is thus O(N)
 Also insert/delete O(N) since find() is first step

Inserts really average 1 + … + N = O(N2) over N inserts O(N)
per insert – gets more complicated with deletions

Analysis, con’t.

 Worst case not so great
 Recall BST set/map find() in worst case O(log2 N)

 O(N) much, much worse than O(log2 N)

 However, we will likely use hashtable many times:
 Q: what is expected (average) cost of find()?

 Probabilistic analysis sketch:
 Assume every hash code equally probable

 Expected occupancy in any slot is α = N / table size

 Expected cost of find() is 1 + α/2 = O(1)

 Typically choose table size so α ≤ 0.75 or so.

Analysis, con’t.

If “uniform hashing” assumption holds:

 find() is O(1) expected

 insert() is O(1) plus O(1) for linked list insert = O(1)

 erase() is O(1) plus O(1) for linked list erase = O(1)

All operations are expected O(1)!

(Could get unlucky, of course…)

11/27/2018

3

Hash Functions

 First defense against collisions is a good hash
function!

 For example: hashing strings

 Could just take first four bytes, cast to int

 Easy and fast to compute

 Can’t distinguish “football”, “footrace”, “foot”, …

 Could just add up ascii codes

 Almost as easy and fast to compute

 Can’t distinguish “saw” from “was”, though

Designing a Good Hash Function

 A good hash function:
 Fast to compute
 Uses entire object
 Separates similar objects widely
 “Random-like”

 Java’s String hash function (string of length n):

ℎ 𝑠 =

𝑖=0

𝑛−1

𝑠[𝑖] ∙ 31𝑛−1−𝑖

s[0] · 31(n - 1) + s[1] · 31(n - 2) + ... s[n – 2] · 31 + s[n - 1]

Example

What is the index for the string “apple” with an array size of
100?

s[0] · 31(n - 1) + s[1] · 31(n - 2) + ... s[n – 2] · 31 + s[n - 1]

hash("apple")

= 'a' × 314 + 'p' × 313 + 'p' × 312 + 'l' × 31 + 'e'
= 97 × 923,521 + 112 × 29,791 + 112 × 961 + 108 × 31 + 101

= 93,029,210

If the array size was 100, then
 index = hash % array_size
 index = 10

Hashing Integers

 Division method:
 hash(k) = k mod table size
 Avoid e.g., table size = 2p → else hash(k) just low order bits of k!
 Good choice: prime not too close to exact power of 2
 Note this method dictates size of hashtable

 Multiplication method:
 Multiply k by real constant A: 0 < A < 1
 Extract fractional part of kA
 hash(k) = ⌊(table size)(kA mod 1)⌋
 Advantage: size of table doesn’t matter!

 Good choices for A: transcendental numbers,
5 −1

2
, etc.

Multiplication Method Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use A =
5 −1

2

 Insert 1,2,3,4,5
4

3

2

1

0

3

1

2

5

4

E.g., insert 3:
⌊5(3 𝐴 mod 1)⌋
= ⌊5(1.85410 mod 1)⌋
= 5 .85410
= 4.2705
= 4

Hashtables in C++ (STL)

 C++ 11 and later:

 unordered_set

 unordered_map

 Same interfaces as set, map

 C++ provides a hash function for many types

 However, for user-defined key types, non-trivial!

11/27/2018

4

Up Next

 Friday, November 30
 Lab 11 – TBA

 Monday, December 3
 Inheritance

 Reading: Chapter 10

 Wednesday, December 5
 Final exam review

 Project 4 due

 Extra credit due

