Review: Sets and Maps

- Data structures for holding unique keys
- Sets just hold keys
- Maps associate keys with values
- Principal operations:
 - `find()` - lookup key/value in set/map
 - `insert()` - put a new key/value into set/map
 - `erase()` - remove a key/value from set/map

O(1) Table Lookups

- Suppose set keys are integers in range 0-99:
 - What is easiest way to store keys?
 - What is the “big-O” complexity of `find()`?

- Arguably, all keys in a computer are numbers!
 - However, range may be very large (too large!)
 - Also, have to ensure uniqueness of number conversion for different keys

Mod

- With the range of our keys being so large (infinitely large?) how do we fit into a table?
- We could just mod key’s value by table size to get index...

Basic Hasutable Idea

- Convert key to an integer (called a hash code)
- Take hash code, mod table size
- Store key at resulting index

It’s that easy, except for collisions!

Very Simple Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key as hash code
Collision Resolution

Collisions:
- Table size typically << size of universe of keys
- Many keys will hash to same index!
- Collisions are inevitable (see Birthday Paradox)

Different schemes for dealing with collisions:
- Chaining
- Open addressing (not covered today)

Chaining

- Basic idea: store linked list at each index
- When finding:
 - If null pointer at index, return NOT FOUND
 - Else, search every node in linked list for item
- When inserting:
 - First do a find() – if item is in linked list, do nothing
 - If not present in list, insert new item into list
- When erasing:
 - Find item
 - If found, remove from linked list

Updated Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key as hash code

Analysis of Hashing with Chaining

- Best Case (N entries, table size >= N):
 - Every entry occupies a unique location
 - Linked lists are all empty or have a single node
 - All operations thus O(1)
- Worst case?
 - N entries occupying same location
 - find() is thus O(N)
 - Also insert/delete O(N) since find() is first step
 - Inserts really average 1 + … + N = O(N²) over N inserts → O(N) per insert – gets more complicated with deletions

Analysis, con’t.

- Worst case not so great
 - Recall BST set/map find() in worst case O(log₂ N)
 - O(N) much, much worse than O(log₂ N)
- However, we will likely use hashtable many times:
 - Q: what is expected (average) cost of find()?
 - Probabilistic analysis sketch:
 - Assume every hash code equally probable
 - Expected occupancy in any slot is α = N / table size
 - Expected cost of find() is 1 + α/2 = O(1)
 - Typically choose table size so α ≤ 0.75 or so.

Analysis, con’t.

If “uniform hashing” assumption holds:
- find() is O(1) expected
- insert() is O(1) plus O(1) for linked list insert = O(1)
- erase() is O(1) plus O(1) for linked list erase = O(1)

All operations are expected O(1)!
(Could get unlucky, of course...)
Hash Functions

- First defense against collisions is a good hash function!
- For example: hashing strings
 - Could just take first four bytes, cast to int
 - Easy and fast to compute
 - Can’t distinguish "football", "footrace", "foot", ...
 - Could just add up ascii codes
 - Almost as easy and fast to compute
 - Can’t distinguish "saw" from "was", though

Designing a Good Hash Function

- A good hash function:
 - Fast to compute
 - Uses entire object
 - Separates similar objects widely
 - "Random-like"
- Java’s String hash function (string of length n):
 $$ h(s) = \sum_{i=0}^{n-1} s[i] \cdot 31^{n-1-i} $$

Example

What is the index for the string "apple" with an array size of 100?

```plaintext
s[0] \cdot 31^{(n-1)} + s[1] \cdot 31^{(n-2)} + \ldots + s[n-2] \cdot 31 + s[n-1]
```

```plaintext
hash("apple")
= 'a' \times 31^4 + 'p' \times 31^3 + 'p' \times 31^2 + 'l' \times 31 + 'e'
= 97 \times 923,521 + 112 \times 29,791 + 112 \times 961 + 108 \times 31 + 101
= 93,029,210
```

If the array size was 100, then
- index = hash \% array size
- index = 10

Hashing Integers

- Division method:
 - hash(k) = k mod table size
 - Avoid e.g., table size = 2^p -> else hash(k) just low order bits of k!
 - Good choice: prime not too close to exact power of 2
 - Note this method dictates size of hashtable
- Multiplication method:
 - Multiply k by real constant A: 0 < A < 1
 - Extract fractional part of kA
 - hash(k) = \lfloor (table size)(kA mod 1) \rfloor
 - Advantage: size of table doesn’t matter!
 - Good choices for A: transcendental numbers, $\frac{\sqrt{5} - 1}{2}$, etc.

Multiplication Method Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use $A = \frac{\sqrt{5} - 1}{2}$
- Insert 1,2,3,4,5

<table>
<thead>
<tr>
<th>Insert</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Hashtables in C++ (STL)

- C++ 11 and later:
 - unordered_set
 - unordered_map

- Same interfaces as set, map
 - C++ provides a hash function for many types
 - However, for user-defined key types, non-trivial!
Up Next

- Friday, November 30
 - Lab 11 – TBA
- Monday, December 3
 - Inheritance
 - Reading: Chapter 10
- Wednesday, December 5
 - Final exam review
 - Project 4 due
 - Extra credit due