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CSCI 262
Data Structures

17 — Binary Search Trees
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Review: Binary Trees

A binary tree is defined recursively:

or

Review: Binary Tree
Implementation

Just follow the recursive definition to get a simple
implementation:

template <class T>

class binary_tree_node {

public:
T data;
binary_tree_node<T>* Tleft;
binary_tree_node<T>* right;
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A binary tree is (empty)
a root node with a left child and a
right child, each of which is a binary
tree.
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Search Trees

Data structure for holding comparable elements
= Efficient searching, insertion, deletion
= Underlying structure for sets, maps (BSTs)
= Also used in database indexing (B-Trees)

The basic structure:
= Nodes hold unique data values and pointers to child nodes
= Data acts as a partitioning element in the tree:
= Child nodes/trees to the left of the data element have value less than
the data element
= Child nodes/trees to the right have a value greater than the data
element
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Binary Search Trees

Here’s a binary search tree (BST):

= Nodes contain strings

= Left child subtree contains only values less than root
= Root value is less than all right child subtree values

“orange”

“quince”

“peach”

“banana”

“cherry

“apple’
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In Order Traversal

. template <class T>
Visit left subtree, void print_inorder (binary_tree_node<T>* root) {
if (root != NULL)
4 print_inorder(root->left);
visit root, cout << root->data << " “;

print_inorder (root->right) ;

visit right subtree. ;

“orange”

“quince”

“guava”

banana “lemon”

“cherry”
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Searching

Example:

search (root, “cherry”) @

template <class T>

binary_tree_node<T>* search(binary_tree_node<T>* root, T val) {
if (root == NULL) return NULL;
if (val == root->data) return root;
if (val < root->data) return search(root->left, val);
else return search(root->right, val);
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Inserting

Where do we insert an item into the tree?

How would you add

“fig” to this tree?
“quince”

“banana” peach”

“lemon”

“apple” “cherry”

Answer: put it where you expect to find it!
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Inserting

template <class T>

void insert(binary_tree_node<T>*& root, T val) {
if (root == NULL) root = new binary_tree_node<T>(val);
else if (val < tree->info) insert(tree->left, val);
else if (val > tree->info) insert(tree->right, val);

Example:
insert(root, “fig”) @
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Removing

template <class T>
void remove(binary_tree_node<T>* root, T val) {
// this 1is trickier!

“quince”

(:ELELE) “lemon”

“cherry”

What do we do first?
What is the base case?

CSiaMines

Removing

3 Cases when node is in tree:
1. No children
2. One child

3. Two children

“orange”

“quince”

‘banana’ “lemon”

“apple” “cherry”
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Removing Case 1: No Child

Find the item

Detach and delete Example:
remove(root, “lemon”)

“orange”

“quince”

“banana” “peach”

“apple” “cherry”
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Removing Case 2: One Child

Find the item

Link child to parent Example:
remove(root, “quince”)

Delete

“orange”

“guava”

“banana”

“cherry”
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3. Remove rightmost node in left

Removing Case 3: Two Children

Find the item
Example:

Swap with rightmost item in left remove(root, “guava”)
subtree (why?)

“orange”

subtree (Case 1 or 2)

“peach”

“banana”

“lemon”

“apple” “cherry”

“guava”
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Removing: Code

template <class T>
void_rem de<T>*& root, T val)

5 aa o Base case: item not found,
if (root == NULL) return NULL;

do nothing.

if (vl < root->data) remove(root->left, val); cursive calls to find item tc
else if (val > root->data) remove(root->right, val); Recursive calls to find ftem to

delete

[else { // iten found!
if (root->left = NULL || root->right — NULL) {
binary_tree_node<T>* tmp; Cases 1and 2, both. Can
if (root->Teft == NULL) tmp = root->right;
B se o = reotoTefts you see why case 1is

delete root; handled by this block?
root = tmp;
else {
binary_tree_node<t>* tmp = root->left; // find rightmost node
binary_tree_node<T>* parent = root;  // in left subtree

while (tmp->right 1= NULL)
parent = tmp;
tmp = tmp->right;

3 Case 3
root->data = tmp->data; // copy data to root
if (parent == root) // detach and delete rightmost node
root->left = tmp->Tleft; // in left subtree
else
parent->right = tmp->left;
delete tmp;
¥
}
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Practice With BST's

https://www.cs.usfca.edu/~galles/visualization/BST.html

Binary Search Tree

Insert Delete Find | Print

Analysis

What is the “big-O” complexity of:
= Searching?
= |nserting?
= Removing?
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Complexity of Search

search(root, “fig”)
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https://www.cs.usfca.edu/~galles/visualization/BST.html

Height of Trees

So how high is a tree with N nodes?

Best case: h = [log,(N+1)]
=0(log N)

Worst case: h=N
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Height-Balanced Trees (AVL)

Again, a recursive definition:
= Left and right subtrees are height-balanced

= Left and right subtrees differ in height by no more
than 1

Which of these are height balanced?
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Analysis on Balanced BSTs

When trees are balanced:

= Each subtree contains roughly half the nodes

= Each step down the tree roughly halves the
problem

template <class T>

binary_t >+ search(binary_tree_node<T>* root, T val) {
if (root == NULL) return NULL

if (val == root->data) return root;

if (val < root->data) return search(root->left

return search(root->right, val);

, val);

}

Search, insert, delete are all O(log N)
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Self Balancing BSTs

* Trees become unbalanced through series of
inserts and deletes

Self-balancing: perform O(log N) or fewer
operations to rebalance after insert, delete

Examples of self-balancing BSTs:
— Red-Black trees

— AVL trees

— Splay trees
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Rotations

We change the balance at a node via a rotation:

This is the right rotation. The left rotation is the
mirror image of this one

If the tree shown was a BST, is the new tree a BST?
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Rebalancing Example (AVL)

Removing this node . . .
unbalances the tree at e Asingle right rotation
restores balance.
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Tree Balancing (AVL)

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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AVL Tree

Insert Delete Find  Print

Final Words

Why BSTs matter:

— Linux kernel: schedulers, ext3 filesystem, virtual
memory, many more (Red-Black trees)

— Ordered set and map types (e.g., C++ STL, Java)
(Red-Black trees again!)

— Database indexing (B-trees — not exactly BSTs, but
related)

— Filesystem metadata indexing (B-trees or R-B)
— Lurking in your favorite 0OS?
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Up Next

= Friday, November 9
= |ab 10, continued
= APT 4 due
= Monday, November 12
= Midterm review
= Lab 10 due
= Wednesday, November 14
= Midterm 2 (in class)
= Friday, November 16
= Fun & Games instead of lab (optional)
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https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

