
11/6/2018

1

CSCI 262

Data Structures

17 – Binary Search Trees

Review: Binary Trees

A binary tree is defined recursively:

a root node with a left child and a
right child, each of which is a binary

tree.

A binary tree is

= or
(empty)

Review: Binary Tree

Implementation

Just follow the recursive definition to get a simple
implementation:

template <class T>

class binary_tree_node {

public:

T data;

binary_tree_node<T>* left;

binary_tree_node<T>* right;

}

Search Trees

Data structure for holding comparable elements
 Efficient searching, insertion, deletion

 Underlying structure for sets, maps (BSTs)

 Also used in database indexing (B-Trees)

The basic structure:

 Nodes hold unique data values and pointers to child nodes

 Data acts as a partitioning element in the tree:
 Child nodes/trees to the left of the data element have value less than

the data element

 Child nodes/trees to the right have a value greater than the data
element

Binary Search Trees

Here’s a binary search tree (BST):

 Nodes contain strings

 Left child subtree contains only values less than root

 Root value is less than all right child subtree values

“orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

In Order Traversal

Visit left subtree,

visit root,

visit right subtree.

apple banana cherry guava lemon orange peach pear quince

template <class T>
void print_inorder(binary_tree_node<T>* root) {

if (root != NULL) {
print_inorder(root->left);
cout << root->data << “ “;
print_inorder(root->right);

}
}

“orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

11/6/2018

2

Searching

template <class T>

binary_tree_node<T>* search(binary_tree_node<T>* root, T val) {

if (root == NULL) return NULL;

if (val == root->data) return root;

if (val < root->data) return search(root->left, val);

else return search(root->right, val);

}

Example:
search (root, “cherry”)

“orange”

“guava”

“banana”

“cherry”

Inserting

Where do we insert an item into the tree?

Answer: put it where you expect to find it!

“orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

“fig”

How would you add
“fig” to this tree?

Inserting

template <class T>
void insert(binary_tree_node<T>*& root, T val) {

if (root == NULL) root = new binary_tree_node<T>(val);
else if (val < tree->info) insert(tree->left, val);
else if (val > tree->info) insert(tree->right, val);

}

Example:
insert(root, “fig”)

“orange”

“guava”

“banana”

“cherry”

“fig”

What if “fig” was
already in our tree?

Removing

template <class T>

void remove(binary_tree_node<T>* root, T val) {

// this is trickier!

...

}
“orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

“fig”
What do we do first?
What is the base case?

Removing

3 Cases when node is in tree:

1. No children

2. One child

3. Two children

“orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

“fig”

Removing Case 1: No Child

1. Find the item

2. Detach and delete

“lemon”

“orange”

“guava”

Example:
remove(root, “lemon”)

“banana”

“quince”

“cherry”“apple”

“peach”

“pear”

“fig”

11/6/2018

3

Removing Case 2: One Child

1. Find the item

2. Link child to parent

3. Delete

Example:
remove(root, “quince”)

“orange”

“quince”

“peach”

“guava”

“banana”

“cherry”“apple” “pear”

“fig”

Removing Case 3: Two Children

1. Find the item

2. Swap with rightmost item in left
subtree (why?)

3. Remove rightmost node in left
subtree (Case 1 or 2)

“orange”

“guava”

“banana” “lemon”

“cherry”

“fig”

Example:
remove(root, “guava”)

“guava”

“fig”

“peach”

“apple” “pear”

Removing: Code
template <class T>
void remove(binary_tree_node<T>*& root, T val) {

if (root == NULL) return NULL;

if (val < root->data) remove(root->left, val);
else if (val > root->data) remove(root->right, val);

else { // item found!
if (root->left == NULL || root->right == NULL) {

binary_tree_node<T>* tmp;
if (root->left == NULL) tmp = root->right;
else tmp = root->left;
delete root;
root = tmp;

}

else {
binary_tree_node<T>* tmp = root->left; // find rightmost node
binary_tree_node<T>* parent = root; // in left subtree
while (tmp->right != NULL) {

parent = tmp;
tmp = tmp->right;

}
root->data = tmp->data; // copy data to root

if (parent == root) // detach and delete rightmost node
root->left = tmp->left; // in left subtree

else
parent->right = tmp->left;

delete tmp;
}

}
}

Base case: item not found,
do nothing.

Recursive calls to find item to
delete.

Cases 1 and 2, both. Can
you see why case 1 is
handled by this block?

Case 3

Practice With BSTs

https://www.cs.usfca.edu/~galles/visualization/BST.html

100
80
90
60
70
10
20
15
25
120
110

Analysis

What is the “big-O” complexity of:

 Searching?

 Inserting?

 Removing?

Complexity of Search

search(root, “fig”) “orange”

“guava”

“banana”

“quince”

“lemon”

“cherry”“apple”

“peach”

“pear”

“fig”

How many
recursive steps?

A. <= height of
tree

https://www.cs.usfca.edu/~galles/visualization/BST.html

11/6/2018

4

Height of Trees

So how high is a tree with N nodes?

Best case: h = ⌈log2(N+1)⌉
= O(log N)

Worst case: h = N

Height-Balanced Trees (AVL)

Again, a recursive definition:

 Left and right subtrees are height-balanced

 Left and right subtrees differ in height by no more
than 1

e

b

a

f

d

c

e

b

a

f

d

c

h

g

e

b

a

g

d f

c

Which of these are height balanced?

Analysis on Balanced BSTs

When trees are balanced:
 Each subtree contains roughly half the nodes

 Each step down the tree roughly halves the
problem

Search, insert, delete are all O(log N)

template <class T>
binary_tree_node<T>* search(binary_tree_node<T>* root, T val) {

if (root == NULL) return NULL;
if (val == root->data) return root;
if (val < root->data) return search(root->left, val);
return search(root->right, val);

}

Self Balancing BSTs

• Trees become unbalanced through series of
inserts and deletes

• Self-balancing: perform O(log N) or fewer
operations to rebalance after insert, delete

• Examples of self-balancing BSTs:

– Red-Black trees

– AVL trees

– Splay trees

Rotations

We change the balance at a node via a rotation:

y

A

C

x

B

y

A

C

x

B

This is the right rotation. The left rotation is the
mirror image of this one.

If the tree shown was a BST, is the new tree a BST?

Rebalancing Example (AVL)

Removing this node
unbalances the tree at e.

e

c

b

g

d f

a

e

c

b

gda

A single right rotation
restores balance.

11/6/2018

5

Tree Balancing (AVL)

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

100
80
90
60
70
10
20
15
25
120
110

Final Words

Why BSTs matter:

– Linux kernel: schedulers, ext3 filesystem, virtual
memory, many more (Red-Black trees)

– Ordered set and map types (e.g., C++ STL, Java)
(Red-Black trees again!)

– Database indexing (B-trees – not exactly BSTs, but
related)

– Filesystem metadata indexing (B-trees or R-B)

– Lurking in your favorite OS?

Up Next

 Friday, November 9
 Lab 10, continued
 APT 4 due

 Monday, November 12
 Midterm review
 Lab 10 due

 Wednesday, November 14
 Midterm 2 (in class)

 Friday, November 16
 Fun & Games instead of lab (optional)

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

