
11/4/2018

1

CSCI 262

Data Structures

16 – Binary Trees

Trees

A (rooted) tree is defined recursively:

a root node with one or more 
children, each of which is a tree.

a tree is 

= or
(empty)

Tree Terminology

node

edge

root node

external nodes / leaves

Internal nodes 
(nodes with 
children)

More Tree Terminology

a

b c

d e

h

f g

i
h is a child of e; it is a 
descendant of e, c, and a

c is a parent of e, f, and g. 
It is an ancestor of e, f, g, h, and i.

e, f, and g are siblings

The circled nodes 
form a subtree

rooted at b

More Tree Terminology

a

b c

d e

h

f g

i

The depth
of a node is 
the number 
of edges 
between it 
and the root 
node.

depth 0

1

2

depth 3

The height of 
a tree is the 
maximum 

depth of any 
node; this 
tree has 
height 3.

Binary Trees

A binary tree is defined recursively:

a root node with a left child and a right
child, each of which is a binary tree.

a binary tree is 

= or
(empty)



11/4/2018

2

Binary Trees

A binary tree

Height of a Binary Tree

What is the min height?
What is the max height?

Minimum Height of a Binary Tree

If we pack the maximum number of nodes into a 
binary tree of height k, then we have* 

1 + 2 + 4 + … + 2k = 2k+1 – 1 nodes, which means…

*This is sometimes 
called a full tree.

Minimum Height of a Binary Tree

… the minimum height of a binary tree with n
nodes is O(log2 n).

Implementing the Binary Tree

Just follow the recursive definition to get a simple 
implementation:

template <class T>

class binary_tree_node {

public:

T data;

binary_tree_node<T>* left;

binary_tree_node<T>* right;

}

Implementing the Binary Tree

 For now, we’ll just implement a tree as nodes

 Tree functions will be free functions

 Can also encapsulate specific kinds of binary 
trees as classes/class templates



11/4/2018

3

Binary Tree Traversals

 A traversal of a tree is the act of visiting every 
node in the tree once.

 There are three traversal orders:

 Pre-order

 In-order

 Post-order

Pre-Order Traversal

Visit the root first, then the left and right sub-
trees recursively:

1

2 7

3 4

5

8

6
The numbers give the order 
of the visited nodes.

In-Order Traversal

Visit the left sub-tree, the root, and then the 
right sub-tree:

6

2 8

1 4

3

7

5
The numbers give the order 
of the visited nodes.

Post-Order Traversal

Visit the left and right sub-trees first and the 
root last:

8

5 7

1 4

2

6

3
The numbers give the order 
of the visited nodes.

Pre-Order Traversal 

Implementation
Note naturally recursive description: visit the root first, 
then the left and right sub-trees.

So we get a naturally recursive implementation:
template <class T>
void do_preorder(binary_tree_node<T>* root) {

if (root != NULL) {
// do something with root->data
do_preorder(root->left);
do_preorder(root->right);

}
}

Other Implementations

Can you write the in-order and post-order 
traversal code?



11/4/2018

4

Traversal Applications

 Print all nodes (in a particular order):
template <class T>

void print_preorder(binary_tree_node<T>* root) {

if (root != NULL) {

cout << root->data << " ";

print_preorder(root->left);

print_preorder(root->right);

}

}

 Count nodes:
template <class T>

int count(binary_tree_node<T>* root) {

if (root == NULL) return 0;

return 1 + count(root->left) + count(root->right);

}

Tree Applications

 Decision trees
 A kind of structure used in AI

 See project 4 – Animal (20 Questions)

 Sets/Maps
 Using Binary Search Trees (next lecture)

 Compression/encoding (Huffman encoding)

 Organizing high-dimensional spaces (k-d trees)

 Spelling dictionary (Tries)

 Many more…

Up Next

 Wednesday, November 7
 Binary search trees
 Reading: Chapter 16.3-16.5

 Friday, November 9
 Lab 10, continued
 APT 4 due

 Monday, November 12
 Midterm review

 Wednesday, November 14
 Midterm 2 (in class)


