
CSCI	261:	Programming	Concepts	
Fall	2019	Syllabus	

https://cs-courses.mines.edu/csci261/index.html	
	
This	 course	 introduces	 fundamental	 computer	 programming	 concepts	 using	 a	 high-level	 language	 and	 a	
modern	development	environment.	Programming	skills	include	sequential,	selection,	and	repetition	control	
structures,	 functions,	 input	 and	 output,	 primitive	 data	 types,	 basic	 data	 structures	 including	 arrays	 and	
pointers,	 objects,	 and	 classes.	 Software	 engineering	 skills	 include	 problem	 solving,	 program	 design,	 and	
debugging	practices.	
	
Well,	 that's	 the	 official,	 boring	 description.	 	 The	 goal	 of	 this	 course	 is	 to	 open	 your	 mind	 to	
computational	 thinking,	 to	 educate	 you	 to	 leverage	 programs	 as	 tools	 in	 your	 field	 of	 study,	 and	 to	
empower	you	with	a	fundamental	knowledge	of	programming.			
	
Course	Learning	Outcomes	
By	the	end	of	this	course,	students	will	be	able	to:	

• Identify	and	construct	proper	object-oriented	C++	syntax.		Explain	the	components	that	comprise	
C++	syntax	and	how	the	components	operate	together.		

• Design	 and	 write	 pseudocode	 to	 accomplish	 a	 given	 task	 or	 solve	 a	 defined	 problem	 using	
common	 programming	 design	 structures	 including	 conditionals,	 loops,	 functions,	 arrays,	 and	
classes.	

• Translate	pseudocode	into	valid	and	correct	C++.	
• Analyze	&	trace	existing	code	and	calculate	the	output	given	an	initial	input	while	explaining	what	

the	code	does.	
• Identify	and	correct	errors	in	C++	syntax,	program	structure,	and	algorithm.	
• Discuss	at	a	high	level	how	C++	code	becomes	an	executable	program	and	how	data	is	stored	in	

computer	memory.	
		
Student	Evaluation	
The	final	course	grade	will	be	computed	from	the	following	course	percentage	breakdown:	

• 			5%	zyBook	Completion	
• 25%	Assignments	+	Labs	
• 10%	Final	project	
• 	

• 10%	Quizzes	
• 15%	Exam	I	
• 15%	Exam	II	
• 20%	Final	Exam	

	
Final	grades	will	be	determined	using	a	straight	scale.		The	straight	scale	assigns	letter	grades	as	follows:	

• [93,	100]	 --	 A	
• [90,	93)	 --	 A-	
• [87,	90)	 --	 B+	
• [83,	87)	 --	 B	
• [80,	83)	 --	 B-	
• [77,	80)	 --	 C+	

• [73,	77)	 --	 C	
• [70,	73)	 --	 C-	
• [67,	70)	 --	 D+	
• [63,	67)	 --	 D	
• [60,	63)	 --	 D-	
• [			0,	60)	 --	 F	

	
You	must	pass	both	the	final	exam	and	the	final	project	with	at	least	a	60%	grade	on	each	in	order	
to	pass	this	course.	
	
All	assignments	are	due	at	11:59PM	on	the	date	stated.		In	order	to	receive	full	credit	for	any	assignment,	
the	submission	must	be	on	time,	unless	an	approved	absence	is	submitted.		Submissions	will	be	accepted	
for	an	additional	72	hours	subject	to	the	following	late	penalties:	
	



• (00h	00m,	24h	00m)	Late:	-10%	
• [24h	00m,	48h	00m)	Late:	-25%	
• [48h	00m,	72h	00m)	Late:	-50%	
• [72h	00m,												INF)	Late:	-100%	

	
Students	are	given	a	set	of	5	Skip	Days.		Each	Skip	Day	used	allows	a	submission	to	be	submitted	an	extra	
day	without	the	late	penalty	being	applied.	
	
While	 there	 exist	 many	 compilers	 and	 IDEs,	 it	 is	 possible	 your	 code	 and	 solution	 may	 work	 in	 one	
environment	but	not	another.	 	All	submissions	will	be	graded	against	g++	(the	compiler	used	with	
CLion).	 	 It	 is	 your	 responsibility	 to	 ensure	 your	 submission	 works	 in	 the	 lab	 environment.	 	 If	 your	
submission	does	not	work	with	g++,	 the	following	penalties	will	be	applied	and	the	grader	will	contact	
you	to	correct	your	submission:	

• Submitting	Extraneous	Files:	-5%	
• Missing	files:	-10%	
• Compiler	Error:	-25%	

	
For	a	discrepancy	in	any	grade	in	which	you	think	you	deserve	more	points	than	you	received,	you	must	
raise	the	issue	within	one	week	of	the	day	the	item	was	returned.	 	No	claims,	justifiable	or	not,	will	
be	 considered	 after	 this	 deadline.	 	 For	 discrepancies	with	 assignments,	 you	 should	 contact	 the	 grader	
first.		For	any	other	discrepancies,	you	should	contact	your	instructor.	
	
Collaboration	Policy	for	Programming	Assignments	&	Projects	in	CS	Courses	
The	 following	policy	exists	 for	all	CS	courses.	 	This	policy	 is	a	minimum	standard;	your	 instructor	may	
decide	to	augment	this	policy.	

• If	the	project	is	an	individual	effort	project,	you	are	not	allowed	to	give	code	you	have	developed	
to	another	student	or	use	code	provided	by	another	student.		If	the	project	is	a	group	project,	you	
are	only	allowed	to	share	code	with	your	group	members.	

• You	are	encouraged	to	discuss	programming	projects	with	other	students	in	the	class,	as	long	as	
the	following	rules	are	followed:	

§ You	 view	 another	 student’s	 code	 only	 for	 the	 purpose	 of	 offering/receiving	 debugging	
assistance.		Students	can	only	give	advice	on	what	problems	to	look	for;	they	cannot	debug	
your	 code	 for	 you.	 	All	 changes	 to	your	code	must	be	made	by	you.	 	A	meeting	with	
another	 student	 regarding	 an	 assignment	 must	 follow	 the	 “empty	 hands”	 policy	
where	you	walk	away	with	no	artifact	of	the	discussion.	

§ Your	discussion	is	subject	to	the	empty	hands	policy,	which	means	you	leave	the	discussion	
without	any	record	[electronic,	mechanical,	or	otherwise]	of	the	discussion.	

• Any	material	 from	any	outside	 source	 such	 as	books,	 projects,	 and	 in	particular,	 from	 the	Web,	
should	be	properly	referenced	and	should	only	be	used	if	specifically	allowed	for	the	assignment.	

• To	prevent	unintended	sharing,	any	code	stored	 in	a	hosted	repository	 (e.g.	on	github)	must	be	
private.		For	group	projects,	your	team	members	may,	of	course,	be	collaborators.	

	
• If	you	are	aware	of	students	violating	this	policy,	you	are	encouraged	to	 inform	the	professor	of	

the	 course.	 	 Violating	 this	 policy	 will	 be	 treated	 as	 an	 academic	 misconduct	 for	 all	 students	
involved.		See	the	Student	Handbook	for	details	on	academic	dishonesty.	

	
	
	
	
	



Academic	Code	of	Honor	
• All	students	are	expected	to	follow	the	University’s	Academic	Code	of	Honor.	
• A	 student	 or	 assigned	 team	 working	 on	 a	 program	 may	 discuss	 high-level	 ideas	 with	 other	

students	or	 teams.	 	However,	 at	 time	of	 submission	all	work	 submitted	must	be	his/her/their	
own	work.	

• Use	 of	 the	 Internet	 as	 a	 reference	 is	 allowed	 but	 directly	 copying	 code	 or	 other	 information	 is	
cheating.		It	is	cheating	to	copy,	allow	another	person	to	copy,	all	or	part	of	an	exam	or	a	project,	
or	to	fake	program	output.	 	It	is	also	a	violation	of	the	Code	of	Honor	to	observe	and	then	fail	to	
report	academic	dishonesty.		You	are	responsible	for	the	security	of	your	own	work.	

• We	will	provide,	as	part	of	 the	course,	 functional	 code	examples	 for	most	of	 the	 topics	covered.		
While	you	are	encouraged	to	examine	these	examples,	your	submissions	must	represent	a	good-
faith	effort	to	complete	the	assignment.		Merely	copying	and	pasting	code	from	the	examples	will	
result	 in	 a	 failing	 grade.	 	 Furthermore,	 relying	 too	 heavily	 on	 the	 given	 examples	 will	 fail	 to	
prepare	you	for	the	much	more	open-ended	final	project.	

• Developing	a	program	is	a	creative	exercise;	just	like	in	art,	no	two	programs	will	look	exactly	the	
same	 (unless	 the	 “canvas”	 has	 been	 copied).	 To	 ensure	 copying	 does	 not	 exist,	 homework	
assignments	are	checked	via	an	automated	system	that	generates	similarity	metrics	between	your	
work	and	that	of	all	other	students	and	previous	student	work	in	this	class.	When	a	high-level	of	
similarity	 is	 detected,	 the	 course	 coordinator	 is	 notified	 and	 investigates	 the	 similarity.	 If	
plagiarism	 is	 evident,	 the	 course	 coordinator	 begins	 the	 process	 of	 submitting	 an	 Academic	
Misconduct.	

	
Disclaimer	
This	syllabus	is	intended	to	give	the	student	guidance	in	what	may	be	covered	during	the	semester	and	
will	be	followed	as	closely	as	possible.	However,	the	professor	reserves	the	right	to	modify,	supplement	
and	make	changes	as	the	course	needs	arise.	
	


