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Singular Value Decomposition (SVD)

* SVD is a matrix technique that has some important
uses in computer vision

e These include:

— Solving a set of homogeneous linear equations
* Namely we solve for the vector x in the equation Ax=0
— Guaranteeing that the entries of a matrix estimated
numerically satisfy some given constraints (e.g.,
orthogonality)

* For example, we have computed R and now want to make sure
that it is a valid rotation matrix
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Singular Value Decomposition (SVD)

* Any (real) mxn matrix A can be written as the product of three matrices
A=UDV’
— U (mxm) and V(nxn) have columns that are mutually orthogonal unit vectors

— D (mxn) is diagonal; its diagonal elements o; are called singular values, and
0,2052...0, 20
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* If only the first r singular values are positive, U'U=LV'V=I
=1, =

the matrix A is of rank r and we can drop

the last p-r columns of U and V U -u; =V;-V, = 0.
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Some properties of SVD

 We can represent A in terms of the vectors u and v
Aw=qw
o Or p_l
. T
A=) oy
j=0

* The vectors u; are called the “principal components” of A

 Sometimes we want to compute an approximation to A using fewer
principal components

* |f we truncate the expansion, we obtain the best possible least squares
approximation?! to the original matrix A

t T 1n terms of the Frobenius
A= ZO'jllej norm, defined as
j=0

Al = 2 8,
I,]
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Some properties of SVD (continued)

e We have
A=UDV’
 Look at
AAT=(UDV)(UDV)"T=UDV'VDU' =UAU’

* where A, =c?

* Multiplying by U on the right on each side yields
(AAT)U=UA

* or
(AAT)u; =2 u

So the columns of U are the eigenvectors of A A7
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Some properties of SVD (continued)

e Similarly, we have
A=UDV’

* Lookat
ATA=(UDV)T(UDV)=VDU'UDV'=VAV’

* where A, =c?

* Multiplying by V on the right on each side yields
(ATA)V=VA

° or
(ATA)v, =LV,

So the columns of V are the eigenvectors of AT A
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Application: Solving a System of Homogeneous
Equations

 We want to solve a system of m linear equations in n
unknowns, of the form Ax =0

— Assume m >= n-1 and rank(A)=n-1

* Any vectors X that satisfy Ax = 0 are in the “null space” of A
— x=0is a solution, but it is not interesting
— If you find a solution x, then any scaled version of x is also a solution

* As we will see, these equations can arise when we want to
solve for
— The elements of a camera projection matrix
— The elements of a homography transform
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Application: Solving a System of Homogeneous
Equations (continued)

* The solution x is the eigenvector corresponding to the only
zero eigenvalue of ATA

— Proof: We want to minimize
HAXH2 = (Ax) Ax=x"A"TAx subjectto x'x=1
— Introducing a Lagrange multiplier A, this is equivalent to minimizing
L(x)=x A" Ax— ﬂ(xTx — 1)
— Take derivative wrt x and set to zero
ATAx—Ax =0

— Thus, A is an eigenvalue of A'A, and x = e, is the corresponding eigenvector.
L(e,) = A is minimized at A=0, so x = e, is the eigenvector corresponding to the
zero eigenvalue.
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Example

e Let

1 0 0
A=
(010j

 Find solution x to Ax=0

0 1 0 0
T 1 0 0
A'A=|0 1 —1l0 1 0
010
0 0 0 0O
0 0 1
Eigenvalues and
:O, = O ﬂu :1, = 1 ﬂ, :1, = 0
eigenvectors of A’A: 4 “ , 2 € . 3 €; X

So x=e, is the solution. To verify:

0
1 0 O 0
Ax = 01 0 0= 0 =0 So it does work
1
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Solving Homogeneous Equations with SVD

* Given a system of linear equations Ax =0

* Then the solution x is the eigenvector corresponding to the only zero
eigenvalue of A’A

e Equivalently, we can take the SVD of A;ie., A=UDV’

— And x is the column of V corresponding to the zero singular value of A
— (Since the columns are ordered, this is the rightmost column of V)

 Example

1 0 0
A=
01 0
(1 0Y1 0 0
Svd: A=UDV" =
0 100 1 0

So the last column of V is indeed the solution x

S O =
oS =~ O
_ o O
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Solving Homogeneous Equations - Matlab

clear all
close all

% Solve the system of equations Ax = 0

A=[1 0 O;
0 1 0171;

[U.D,V] = svd(A);
x = V(:,end);

*  OQOutput
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% get last column of V

>>V
V=
1 0 O
0 1 0
0O 0 1
>> X
X =
0
0
1
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Example

* Solve this system of equations using SVD

—3x1 — 3%, + X3 =0
— 2X5 +4x3 +3.5x, =0

X1+ X, + 5x3+ 4x, =0
—2x1 +3x5, +3x3 + 0.5x, =0
—X1 + x, —5x3 — 45x, =0

 What if you have fewer equations?
 What if there is noise in the equation coefficients?
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Another application: Enforcing constraints

 Sometimes you generate a numerical estimate of a matrix A

— The values of A are not all independent, but satisfy some algebraic
constraints

— For example, the columns and rows of a rotation matrix should be
orthonormal

— However, the matrix you found, A’, does not satisfy the constraints

* SVD can find the closest matrix! to A that satisfies the
constraints exactly

* Procedure:
— You take the SVDof A’ =UD V'

— Create matrix D’ with singular values equal to those expected when
the constraints are satisfied exactly

— Then A = U D’ V7 satisfies the desired constraints by construction

1In terms of the Frobenius norm
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Example — rotation matrix

* The singular values of R should all be equal to 1 ... we will
enforce this

clear all
close all

% Make a valid rotation matrix

ax = 0.1; ay = -0.2; az = 0.3; % radians

Rx = [ 1 0 0; 0 cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
Ry = [ cos(ay) O sin(ay); 0 1 0; -sin(ay) O cos(ay)];
Rz = [ cos(az) -sin(az) O0; sin(az) cos(az) 0; 0 0 1];

R =Rz * Ry * RX

% Ok, perturb the elements of R a little
Rp = R + 0.01*randn(3,3)

[U,D,V] = svd(Rp); % Take SVD of Rp
D % Here i1s the actual matrix of singular values

% Recover a valid rotation matrix by enforcing constraints
Rc = U * eye(3,3) * V"
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