

SVD

Singular Value Decomposition (SVD)

- SVD is a matrix technique that has some important uses in computer vision
- These include:
 - Solving a set of homogeneous linear equations
 - Namely we solve for the vector x in the equation Ax = 0
 - Guaranteeing that the entries of a matrix estimated numerically satisfy some given constraints (e.g., orthogonality)
 - For example, we have computed **R** and now want to make sure that it is a valid rotation matrix

Singular Value Decomposition (SVD)

- Any (real) mxn matrix **A** can be written as the product of three matrices $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^T$
 - \mathbf{U} (mxm) and \mathbf{V} (nxn) have columns that are mutually orthogonal unit vectors
 - − **D** (*mxn*) is diagonal; its diagonal elements σ_i are called singular values, and $\sigma_1 \ge \sigma_2 \ge ... \sigma_n \ge 0$

If only the first r singular values are positive,
 the matrix A is of rank r and we can drop
 the last p-r columns of U and V

$$\mathbf{U}^{T}\mathbf{U} = \mathbf{I}, \mathbf{V}^{T}\mathbf{V} = \mathbf{I}$$
$$\mathbf{u}_{i} \cdot \mathbf{u}_{i} = \mathbf{v}_{i} \cdot \mathbf{v}_{i} = \delta_{ii}$$

Some properties of SVD

We can represent A in terms of the vectors u and v

$$\mathbf{A} \mathbf{v}_j = \sigma_j \mathbf{u}_j$$

or

$$\mathbf{A} = \sum_{j=0}^{p-1} \boldsymbol{\sigma}_j \mathbf{u}_j \mathbf{v}_j^T$$

- The vectors u_i are called the "principal components" of A
- Sometimes we want to compute an approximation to A using fewer principal components
- If we truncate the expansion, we obtain the best possible least squares approximation¹ to the original matrix **A**

$$\mathbf{A} \approx \sum_{j=0}^{t} \boldsymbol{\sigma}_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}$$

¹In terms of the Frobenius norm, defined as

$$\left\|\mathbf{A}\right\|_F = \sum_{i,j} a_{i,j}^2$$

Some properties of SVD (continued)

We have

$$A = U D V^T$$

Look at

$$\mathbf{A} \mathbf{A}^T = (\mathbf{U} \mathbf{D} \mathbf{V}^T) (\mathbf{U} \mathbf{D} \mathbf{V}^T)^T = \mathbf{U} \mathbf{D} \mathbf{V}^T \mathbf{V} \mathbf{D} \mathbf{U}^T = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$$

- where $\lambda_i = \sigma_i^2$
- Multiplying by \mathbf{U} on the right on each side yields $(\mathbf{A} \mathbf{A}^T) \mathbf{U} = \mathbf{U} \Lambda$
- or

$$(\mathbf{A} \mathbf{A}^T) \mathbf{u}_j = \lambda_j \mathbf{u}_j$$

• So the columns of \mathbf{U} are the eigenvectors of $\mathbf{A} \mathbf{A}^T$

Some properties of SVD (continued)

Similarly, we have

$$A = U D V^T$$

Look at

$$A^T A = (U D V^T)^T (U D V^T) = V D U^T U D V^T = V \Lambda V^T$$

- where $\lambda_i = \sigma_i^2$
- Multiplying by V on the right on each side yields $(A^T A) V = V \Lambda$
- or

$$(\mathbf{A}^T \mathbf{A}) \mathbf{v}_j = \lambda_j \mathbf{v}_j$$

• So the columns of V are the eigenvectors of $A^T A$

Application: Solving a System of Homogeneous Equations

- We want to solve a system of m linear equations in n unknowns, of the form Ax = 0
 - Assume $m \ge n-1$ and rank(A)=n-1
- Any vectors x that satisfy Ax = 0 are in the "null space" of A
 - x=0 is a solution, but it is not interesting
 - If you find a solution \mathbf{x} , then any scaled version of \mathbf{x} is also a solution
- As we will see, these equations can arise when we want to solve for
 - The elements of a camera projection matrix
 - The elements of a homography transform

Application: Solving a System of Homogeneous Equations (continued)

- The solution \mathbf{x} is the eigenvector corresponding to the only zero eigenvalue of $\mathbf{A}^T\mathbf{A}$
 - Proof: We want to minimize

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T \mathbf{A}\mathbf{x} = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}$$
 subject to $\mathbf{x}^T \mathbf{x} = 1$

- Introducing a Lagrange multiplier λ , this is equivalent to minimizing

$$L(\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1)$$

Take derivative wrt x and set to zero

$$\mathbf{A}^T \mathbf{A} \mathbf{x} - \lambda \mathbf{x} = 0$$

- Thus, λ is an eigenvalue of $\mathbf{A}^T \mathbf{A}$, and $\mathbf{x} = \mathbf{e}_{\lambda}$ is the corresponding eigenvector. $L(\mathbf{e}_{\lambda}) = \lambda$ is minimized at $\lambda = 0$, so $\mathbf{x} = \mathbf{e}_0$ is the eigenvector corresponding to the zero eigenvalue.

Example

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Find solution x to Ax=0

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Eigenvalues and eigenvectors of $\mathbf{A}^T \mathbf{A}$:

$$\lambda_1 = 0, \, \mathbf{e}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \lambda_2 = 1, \, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \lambda_3 = 1, \, \mathbf{e}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

So $\mathbf{x} = \mathbf{e}_1$ is the solution. To verify:

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \mathbf{0}$$

So it does work

Solving Homogeneous Equations with SVD

- Given a system of linear equations Ax = 0
- Then the solution \mathbf{x} is the eigenvector corresponding to the only zero eigenvalue of $\mathbf{A}^T\mathbf{A}$
- Equivalently, we can take the SVD of **A**; ie., $\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^T$
 - And x is the column of V corresponding to the zero singular value of A
 - (Since the columns are ordered, this is the rightmost column of V)
- Example

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Svd:
$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

So the last column of V is indeed the solution x

Solving Homogeneous Equations - Matlab

Output

```
>> V
>> U
                       V =
U =
                         1 0 0
  1
    0
                         0 1 0
                            0 1
>> D
D =
                       >> x
  1 0 0
                       x =
  0 1 0
                         0
                         0
```

Colorado School of Mines Computer Vision

Example

Solve this system of equations using SVD

$$-3x_{1} - 3x_{2} + x_{3} = 0$$

$$-2x_{2} + 4x_{3} + 3.5x_{4} = 0$$

$$x_{1} + x_{2} + 5x_{3} + 4x_{4} = 0$$

$$-2x_{1} + 3x_{2} + 3x_{3} + 0.5x_{4} = 0$$

$$-x_{1} + x_{2} - 5x_{3} - 4.5x_{4} = 0$$

- What if you have fewer equations?
- What if there is noise in the equation coefficients?

Another application: Enforcing constraints

- Sometimes you generate a numerical estimate of a matrix A
 - The values of A are not all independent, but satisfy some algebraic constraints
 - For example, the columns and rows of a rotation matrix should be orthonormal
 - However, the matrix you found, A', does not satisfy the constraints
- SVD can find the closest matrix¹ to A that satisfies the constraints exactly
- Procedure:
 - You take the SVD of $\mathbf{A}' = \mathbf{U} \mathbf{D} \mathbf{V}^T$
 - Create matrix D' with singular values equal to those expected when the constraints are satisfied exactly
 - Then $\mathbf{A} = \mathbf{U} \mathbf{D}' \mathbf{V}^T$ satisfies the desired constraints by construction

¹In terms of the Frobenius norm

Example – rotation matrix

 The singular values of R should all be equal to 1 ... we will enforce this

```
clear all
close all

% Make a valid rotation matrix
ax = 0.1; ay = -0.2; az = 0.3; % radians
Rx = [ 1 0 0; 0 cos(ax) -sin(ax); 0 sin(ax) cos(ax)];
Ry = [ cos(ay) 0 sin(ay); 0 1 0; -sin(ay) 0 cos(ay)];
Rz = [ cos(az) -sin(az) 0; sin(az) cos(az) 0; 0 0 1];

R = Rz * Ry * Rx

% Ok, perturb the elements of R a little
Rp = R + 0.01*randn(3,3)

[U,D,V] = svd(Rp); % Take SVD of Rp

D  % Here is the actual matrix of singular values

% Recover a valid rotation matrix by enforcing constraints
Rc = U * eye(3,3) * V'
```