
Cognitive walkthrough:
description and example

Based on Task-Centered Design by
Clayon Lewis & John Rieman, CU Boulder

Cognitive Walkthrough
 Formalized way of imagining people's thoughts and actions when they use an interface for the

first time.
 Not a technique for evaluating the system over time (e.g., how quickly a user moves from beginner to

intermediate)

 First select a REAL, COMPLETE, REPRESENTATIVE TASK that the design is intended to
support.
 Task-Centered Design and Goal-Directed Design are both types of User-Centered Design

 Then try to tell a believable story about each action a user has to take to do the task.
 IMPORTANT! Telling a believable story helps to stay “in persona” – filling in an Excel spreadsheet may not

accomplish this same goal.

 To make the story believable, you have to motivate each of the user's actions, relying on the
user's general knowledge and on the prompts and feedback provided by the interface. If you
can't tell a believable story about an action, then you've located a problem with the interface.
 Will the user try this action? May depend on background of user… make sure you get “in persona” before

doing the walkthrough!

 Is the action visible and easy to notice?

 Is the action clear? Vocabulary problem (next slide)

What’s it good for?
 Question assumptions about what the users will be thinking

 Identify controls that may be missing or hard to find (buried menus, issues with
gesture-based interfaces)

 Note inadequate feedback (did I really make progress? How do I know?)

 Suggest difficulties with labels and prompts…. terms that are ambiguous or too
techy. Multiple labels that could be the correct step.

The Vocabulary Problem
 Armchair naming. Designers use names that make sense to them.

 In a study to determine the likelihood that two people will apply the same name to an object:

Personnel Domain %

Typists Describe text editing operation 11%

System Designers Commands for a message decoder 8%

College students First word used to describe common objects like
love, motorcycle

12%

Expert cook/homemaker Recipe keyword 18%

How to do it
Prior to doing a walkthrough, you need four things:
1. You need a description of a prototype of the interface.

It doesn't have to be complete, but it should be fairly
detailed. Things like exactly what words are in a menu
can make a big difference.

2. You need a task description (for a representative task).
3. You need a complete, written list of the actions needed

to complete the task.
4. You need an idea of who the users will be and what

kind of experience they'll bring to the job.

Some caveats
 Don't merge step 3 into the evaluation process.

The walkthrough should look at the exact sequence, to
identify problems users might encounter when following
it.
 Every semester, at least one student makes this mistake.You

need to write the steps first, THEN do the walkthrough. May
be helpful to do at different times.

 The walkthrough does not test real users on the system.
With a walkthrough you can potentially evaluate the
interface by imagining the behavior of entire classes of
users, not use one unique user.

Goal: Create UML diagram in DIA
 Want to create a simple UML diagram:

Representative Task

What Persona?
 Student taking software engineering
 Basic familiarity with various kinds of software, including

drawing programs
 Understands the parts of a UML diagram (i.e., the tool is

not teaching UML, but helping to easily create diagrams)

 As you read the example, think about how the analysis
would change if these user assumptions were not true.

Steps
1. Put in UML mode

2. Add parent class (Student)
A. Select class tool

B. Draw class onto canvas by clicking

C. Change class name

3. Add name as private String
A. Bring up dialog, click on Attribute tab

B. Click New

C. Enter name

D. Change visibility to Private

E. Click OK

4. Add public method addCourse (String
parameter)

A. Click on Operations tab

B. Press New

C. Enter method name

D. Click New parameter

E. Enter parameter name (course)

F. Enter parameter type (String)

5. Add CSMajor and MathMajor as
children

A. Create CSMajor and MathMajor classes, as
above

B. Line them up on the canvas

C. Select Generalization tool

D. Drag mouse from parent class to one
child

E. Use Zigzagline to connect to second child

Step 1: UML mode
 Screen comes up in database mode

I’m thinking: I want to create a UML diagram

Action:
• I see a lot of symbols that aren’t UML.
• I look through the menus, don’t see UML.
• Finally notice drop down with Database. I try it. Now I

see UML.

Recommendation:
• Highlight the drop down. It’s not hidden, but its location

in the middle of the screen makes it much less obvious.
• Also, add a Diagram Type option to one of the menus,

maybe Select.

Step 2: Add parent class (Student)
Step 2A: Select class tool

 Now the UML menu is available.
I’m thinking: I want to draw a box for Student.
Student is the parent class.

Action:
• Top symbols all seem generic, I don’t pay much

attention.
• The symbols under UML are more relevant.
• First one looks like the right kind of box (or

maybe second one).
• I move mouse over first symbol.Tool tip for first

one says class. I click on it.

Recommend:
• Tool tips are effective.
• Class is first icon, good because most UML

diagrams probably begin with Class.
• No issues with this step… but it might be good to

highlight the Class button, if the drawing is empty.

Step 2: Add parent class (Student)
Step 2B: Draw class onto canvas by clicking

 Now I’ve selected the class tool

I’m thinking: OK, now I want to add Student to
my diagram. Do I click or drag?

Action:
• I click on the canvas.
• Class is added, with name Class.

Recommend:
• This seems clear (for users with some

drawing experience), no recommendation

Step 2: Add parent class (Student)
Step 2C: Change class name

 Now I’ve added the class to my drawing

I’m thinking: I want to change the name to Student.

Action:
• I click on name (thinking I might edit in place).

No action.
• I look at Edit menu, but nothing obvious.
• I double-click where it says Class.
• Dialog comes up.
• First text field is Class name. I enter Student.

Press OK.
• Class name is changed to Student.

Recommend:
• It might be nice to add a Properties option to

the Edit menu, as some users are very menu
oriented.

• A more advanced program might allow the user
to click and edit things like names… but DIA is a
free program, and it doesn’t take long to figure
out the double click. So OK.

Step 3: Add name as private String
Steps 3A: Bring up dialog, click Attribute tab

 Now I’ve changed the class name to Student
I’m thinking: OK, I want to add my fields. Editing in-place is
not an option, but there were a lot of options on that dialog
I just used.

Action:
• I double-click on Student class.
• Dialog appears.
• Checkboxes don’t seem to apply. I notice Attributes

(which I recognize as synonym for fields – this could be a
vocabulary issue for some users). Click on Attributes
tab.

Recommend:
• Tabs probably OK for experienced users. Would a novice

notice? Different styling might make tabs more obvious.
• Dialog has options I don’t understand (e.g., Attributes

visible vs. Suppress Attributes, Wrap options). Visual
icons might help explain these options.

• It would also be nice to bring up the dialog in Attributes
mode if I click on the Attributes part of the drawing.

Step 3: Add name as private String
Steps 3B:Click New

 Now I’m at the correct dialog
I’m thinking: I want to type in the variable info.

Action:
• I try to type in Name: field, but it’s grayed out.
• I consider just typing into the big text box, but that

doesn’t seem right.
• I notice New, figure that’s what I need.
• Click it, I’m able to enter a Name and Press OK.

Recommend:
• We read left-to-right. I would probably put buttons on

left side of text area. Maybe put default text such as “No
attributes defined” or “Click New to add attribute” in the
text area.

• If no attributes defined, gray out Delete, Up and Down
buttons. Would make New stand out.

• What’s the difference between Apply and OK? Confusing,
but I’ve met my goal so I ignore for now.

Step 3: Add name as private String
Steps 3B:Change visibility to Private

 Now my attribute is listed, but it has a +
I’m thinking: I missed something.

Action:
• I bring dialog back up
• Click on name
• I quickly notice Visibility, change to

Private

Recommend:
• I would default to Private (that’s normally

recommended except for constants)
• I would move Visibility higher in list, after

Type or Value

Step 4: Add name as private String
Steps 3B:Change visibility to Private

 Now my attribute is listed, but it has a +
I’m thinking: I missed something.

Action:
• I bring dialog back up
• Click on name
• I quickly notice Visibility, change to

Private

Recommend:
• I would default to Private (that’s normally

recommended except for constants)
• I would move Visibility higher in list, after

Type or Value

Step 4: Add public method addCourse
Steps 4A – 4E

 Now my attribute is listed, but it has a +

I want to add a method.

Action: I know now to look at the tabs. Methods
is not there, but Operations is. Screen operation
is similar to Attributes, so I immediately press New.
I then enter the method Name. I press New under
parameters. I enter the Name and Type.

Recommend:
• Similar suggestions as for Attributes.
• I’m not sure what some options are (e.g.,

Query) but I ignore for now.

Step 5: Add CSMajor and MathMajor as children
Step 5A:

 Now I have a fully defined parent class
I’m thinking: I know how to create classes,

first I need to create the two children.

Recommend:
• No recommendation

Step 5: Add CSMajor and MathMajor as children
Step 5B: Line them up on the canvas

 Now I have 3 classes
I’m thinking: it was easy to add the classes,

but now I have to put in the relationships.
First I want them lined up below the
parent.

Action:
• The canvas is like most drawing

programs, so I just click on the objects
and move them.

Recommend:
• No recommendation

Step 5: Add CSMajor and MathMajor as children
Step 5C: Select Generalization tool

 Now I have 3 classes lined up
I’m thinking: I need to add an inheritance

relationship from the parent to each
child.

Action:
• Notice that the UML toolbar has a tool

in the 2nd row that looks like
generalization. Tool tip confirms.

Recommend:
• No recommendation

Step 5: Add CSMajor and MathMajor as children
Step 5D: Drag mouse from parent class to one
child

 Now I have 3 classes and have selected inheritance tool
I’m thinking: This looks like a typical drawing

tool. I should draw from the parent to
the child (the child “looks up” to the
parent… and the icon reinforces this)

Action:
• Use tool to draw as expected. As I’m

drawing I notice the connection points
on the sides of the classes. Line snaps
into place.

Recommend:
• No recommendation

Step 5: Add CSMajor and MathMajor as children
Step 5E: Use Zigzagline to connect to second child

 Now I have 3 classes and one inheritance relationship
I’m thinking: There should be an easy way to connect

a second child.

Action:
• I try to click on existing line, but don’t see any way

to extend it to the 2nd class. I look at other tools
at top of program. I notice the jagged line (tool
tip says Zigzagline). Click on that, use to update
drawing. *

Recommend:
• The drawing looks OK, but there doesn’t seem to

be any semantic meaning. It would be great to
click on triangle, click on 2nd child, have the tool
generate the line.

* There may be a better way to do this, but I haven’t found it.

Task Complete!
 And we have a number of potential recommendations.

	Cognitive walkthrough: description and example
	Cognitive Walkthrough
	What’s it good for?
	How to do it
	Some caveats
	Goal: Create UML diagram in DIA
	What Persona?
	Steps
	Step 1: UML mode
	Step 2: Add parent class (Student)�Step 2A: Select class tool
	Step 2: Add parent class (Student)�Step 2B: Draw class onto canvas by clicking
	Step 2: Add parent class (Student) �Step 2C: Change class name
	Step 3: Add name as private String�Steps 3A: Bring up dialog, click Attribute tab
	Step 3: Add name as private String�Steps 3B:Click New
	Step 3: Add name as private String�Steps 3B:Change visibility to Private
	Step 4: Add name as private String�Steps 3B:Change visibility to Private
	Step 4: Add public method addCourse �Steps 4A – 4E
	Step 5: Add CSMajor and MathMajor as children�Step 5A:
	Step 5: Add CSMajor and MathMajor as children�Step 5B: Line them up on the canvas
	Step 5: Add CSMajor and MathMajor as children�Step 5C: Select Generalization tool
	Step 5: Add CSMajor and MathMajor as children�Step 5D: Drag mouse from parent class to one child
	Step 5: Add CSMajor and MathMajor as children�Step 5E: Use Zigzagline to connect to second child
	Task Complete!

