
8/26/2018

1

CSCI 403

Database Management

4 – SQL Functions and Operators

BOOLEAN(ISH) OPERATORS

2

Comparison Operators

Comparison operators:

3

Operator Meaning

= equals

<> or != not equals

< less than

> greater than

<= less than or equal

>= greater than or equal

BETWEEN a BETWEEN x AND y
≡

a >= x AND a <= y

Logical Operators

4

a b a AND b a OR b

true true true true

true false false true

true NULL NULL true

false false false false

false NULL false NULL

NULL NULL NULL NULL

AND, OR, NOT
SQL has three-valued logic because of NULL. Here are the truth tables:

a NOT a

true false

false true

NULL NULL

If you think of NULL as meaning “unknown”, or “cannot be determined”,
then these truth tables are pretty easy to reproduce.

Operators To Use With NULL

NULL cannot be (usefully) compared:

a = NULL gives NULL

NULL <> b gives NULL

NULL = NULL gives NULL!

Instead, use IS NULL or IS NOT NULL:

a IS NULL

b IS NOT NULL

Also available: IS [NOT] DISTINCT FROM

Acts like <> or =, except treating NULL as a distinct value.

5

String Pattern Matching

string [NOT] LIKE pattern

pattern is a string literal containing:
Regular characters – these just match themselves
% - matches zero or more of any character
_ - matches exactly one of any character
\% - matches %
_ - matches _

e.g.
'foobar' LIKE 'foo%'  true
'foobar' LIKE '%bar'  true
'foobar' LIKE 'f%r'  true
'foobar' LIKE 'foo_ar'  true
'foobar' LIKE 'foobar'  true

6

PostgreSQL also supports POSIX regular expression matching (this is not standard SQL):
https://www.postgresql.org/docs/9.5/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

https://www.postgresql.org/docs/9.5/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP

8/26/2018

2

Usage

 The above operators are most used in WHERE
SELECT * FROM mines_cs_faculty
WHERE office IS NOT NULL;

SELECT * FROM mines_cs_faculty
WHERE name LIKE '%Christopher';

 Can also use in other clauses if t/f value is desired:
SELECT 'foobar' LIKE 'f_o_a_';

?column?

t

(1 row)

7

OTHER FUNCTIONS AND

OPERATORS

8

Constants

Not really a SQL function, but any literal acts like a constant function:

SELECT name, 'yay' FROM mines_cs_faculty;

name | ?column?
--------------------------------+----------
Han, Qi | yay
Painter-Wakefield, Christopher | yay
Paone, Jeffrey | yay
Wang, Hua | yay
Yang, Dejun | yay
Yue, Chuan | yay
Camp, Tracy | yay
Dantam, Neil | yay
Fisher, Wendy | yay
...

9

Math

A small sampling of math operators/functions:

See
https://www.postgresql.org/docs/9.5/static/functions-math.html

for a complete list!

10

Operator Meaning

+, -, *, / Addition, etc.

% Modulo

^ Exponentiation

! Factorial

|/ Square root

Function Meaning

ceil(n) Ceiling function

log(n) Base 10 logarithm

pi() π

sin(n) Sine function

round(n,s) Round to s places

Strings

Lots to choose from here, too. A sampling:

See
https://www.postgresql.org/docs/9.5/static/functions-string.html

11

Operator or Function Meaning Examples

|| concatenation 'foo' || 'bar'  'foobar'
'answer:' || 42  'answer:42'

lower(s) convert to all lowercase lower('SQL Yay')  'sql yay'

substring(s from x for y) substring substring('hello' from 4)  'lo'

rtrim(s, chars) remove chars from right rtrim('joe2', '123')  'joe'

Translate(s, from, to) replace characters translate('hello', 'eo', 'au')  'hallu'

…and More

 Date/Time functions:

 extract() – extract hour, minute, etc.

 date_trunc() – truncate to start of day, hour, etc.

 current_date, current_time, now() – get current
date/time/timestamp

 Geometric functions

 XML, JSON functions

 coalesce(), case(), …

12

https://www.postgresql.org/docs/9.5/static/functions-math.html
https://www.postgresql.org/docs/9.5/static/functions-string.html

8/26/2018

3

Usage

 Pretty much anywhere…
SELECT lastname || ', ' || firstname

FROM person;

SELECT * FROM sales

WHERE amt + tax > 100.0;

UPDATE employee SET salary = salary * 1.04;

SELECT * FROM foo

GROUP BY substring(bar from 1 for 3);

13

Up Next

 Next lecture:

Intro to SQL: Schemas and aliasing, joins.

14

