CSCI 403 Database Management

25– NoSQL Databases

This Lecture

Introduction to Big Data and NoSQL.

3 “V’s” of Big Data

- **Volume** – Terabytes (or more) per day, rather than mega- or gigabytes.
- **Velocity** – lots of events/second – e.g., high frequency stock trading
- **Variety** – complex types of data (possibly poor fit for relational schemas)

NoSQL

- “Not only SQL”
- How does it help?
 - Scalability – online expansion of data storage
 - Availability – multiple replicated nodes with failover
 - Faster reads
 - Tradeoff – eventual consistency instead of immediate
 - Sharding – partitioning of data across nodes (with clever client routing)
 - Key access – fast access via object ids/references
 - No schema – semi-structured, self-describing data types (JSON, XML)
 - Less powerful query languages – simple CRUD (Create, Read, Update, Delete) interfaces
 - No joins!

Categories

- **Document-based** – typically stores JSON documents, with a unique id for each document, and fast lookup given id
 - MongoDB is the leading example
- **Key-Value store** – fast access by key to a record, which can be any type of object
 - Cassandra, Oracle, Redis, Voldemort, many more
- **Column-based** – more SQL-ish, but data is stored by column, not rows
 - Google BigTable, Apache Hbase, etc.
- **Graph-based** – stores nodes and edges of a graph structure
 - Neo4J, etc.; also see: SPARQL

CAP Theorem

- **Consistency**
 - Data in replicated nodes always matches
- **Availability**
 - Every request gets an answer
- **Partition tolerance**
 - Database keeps functioning even if network is partitioned into two or more subnets

CAP Theorem: Only possible to guarantee 2 of 3 in distributed systems with data replication. Controversial.
Eventual Consistency

- Immediate consistency
 - Expensive in distributed database systems
 - Lose performance advantages
- NoSQL may opt for eventual consistency
 - Propagation of transactions to distributed nodes (still fast, but can result in interleaving transactions with temporarily inconsistent data)
 - "If no new updates are made to a data item, eventually all reads of that data item will return the last updated value"*

NewSQL

- RDBMS with scalable performance of NoSQL, keeping ACID guarantees (e.g., consistency)
 - Primarily oriented towards OLTP (online transaction processing)
 - Lots of small reads writes
 - Seldom large table scans or joins
 - Think banking
 - Uses SQL
 - New underlying technologies, e.g., distributed, shared-nothing clustering, hardware assisted clock synchronization
 - Google Spanner, CockroachDB
 - New optimized SQL engines for existing databases
 - MySQL Cluster, TokuDB

Next Time

- MongoDB