
4/7/2019

1

CSCI 403

Database Management

21 – Disks, File Organization, and B-
Trees

This Lecture

 How the files are stored on rotational media

 Strategies for reading/writing/storing
database records

 B-Tree indexes

HARD DISK

DRIVES

Rotational Media

Hard Drive Basics

Thin metal platters coated with a
magnetic material, rotating at high
speed. Data bits are stored as
differently oriented magnetic domains.

Read/write heads, one per platter side. These
float extremely close to the platters and detect
or modify magnetic domains as the spinning
disk brings them under the heads.

Stepper motor assembly. The
read/write heads are on the end of an
array of arms which can swing to
different distances from the disk center,
thus accessing different “tracks”.

Data Organization

Data is stored in tracks, which are further
broken into sectors.

Sectors typically hold between 512 –
4096 bytes.

At the hardware level, an entire sector is
read or written at one time. However,
from the operating system perspective,
an entire block is read/written. A block
is a higher level abstraction which may
encompass multiple sectors.

For the rest of this discussion, we’ll
assume a block == a sector.

track

sector
(one
segment)

Obviously this drawing is
highly notional, as HDDs
pack many more tracks and
sectors onto a platter.

Access Time
 A block can be read or written extremely fast… once found.
 The cost to read a block is mostly due to the access time, the sum

of:
 Seek time – time to move read/write heads to the right track
 Rotational latency – time to rotate until block is under read/write

head

 Some numbers:
 Typical average seek time for a drive: 9ms
 Rotational latency for a high-end server drive (15,000 RPM): 2ms

 Notes:
 Caching, buffering, and other clever optimizations make these

numbers hard to measure exactly
 Newer storage technologies (SSD, Optane, etc.) have completely

different performance characteristics (for now, HDDs are still
dominant in DB storage)

4/7/2019

2

Key Insight

 A program can do almost anything with a
block of data in memory on a modern CPU in
much less time than 10 ms

 That is, compared to a read, time to process the
data is negligible

 Disk I/O is thus the primary bottleneck for
database query latency FILE ORGANIZATION

How is a database table stored on a drive?

Organizing Records

 While a key facet of the modern database is data
abstraction, the data ultimately has to be stored
somewhere/somehow
 Intersection of hardware, software, and algorithms
 HDD technology has shaped the technology for 40+ years

 Many approaches to this in various databases
 We’ll explore a popular approach organized around

primary keys
 This scheme will lead us to the idea of a hierarchical index

and B-Trees
 Note that PostgreSQL (and probably others) use different

schemes

Ordered Storage by Primary Key

 Store multiple records in each block
 Within blocks, order by primary key
 Maintain a list of blocks as well, ordered by primary key of first

record in block

 Note we can now do binary search (O(log2 n)) lookups:
 Find a block holding a particular key
 Find a particular record within a block

 Issues:
 Insertion/deletion – what to do when out of room / how to fill

gaps?
 Scaling: is it fast enough?
 What if we want to search by something other than primary

key?

Issue 1: Insertion/Deletion

 When inserting a record, if no room:
 Must move records aside to make room
 This is expensive if we keep everything closed up tight
 Solution: keep some “spare” room around:

 If no room, split block into two blocks – now each is half full and
insert is cheap

 Good performance, worst-case 2x storage requirement

 Similarly, when deleting, blocks may become largely
empty:
 Requires lots of disk access for relatively few records

stored
 Solution: merge adjacent blocks when less than half full

Issue 2: Scaling/Performance

 Suppose we have a table with:
 100M records

 100 records per block (max)

 Assume a disk with 10ms access time

 What is cost to find a record given a primary key value?
 1M ≈ 220 blocks, so binary searchmust read 20 blocks in

worst case

 10ms/block × 20 blocks = 200ms

 OK, that sounds fast, but consider a modern
transaction processing system (e.g., stock trading)
handling thousands of queries per second!

4/7/2019

3

Second Level Index

 Obviously this is not fast enough. What to do?

 Solution: create an index, a kind of table storing
primary keys together with pointers to the blocks
containing them.
 Each record represents the first key in a block

 We can now stuff ~100 or more index records into a block

 How does this help?
 Now search 1/100th number of blocks: only search 10,000

≈ 214 blocks

 Cost is ~140ms to search index + 10ms to lookup
referenced block

Additional Levels

 150ms still not good enough:
 Make another index indexing the second level index
 Another 100x reduction  70ms + 10ms + 10ms cost

 Repeat again until all keys (at top level) fit into one
block. Cost ~30ms

 Cost of searching with hierarchical index no longer
O(log2 n), more like O(log100 n)

 Generalizing this approach leads to the B-Tree data
structure
 By default, all indices in PostgreSQL use B-Trees
 Not limited to primary keys!

B-TREES

B-Tree Data Structure

 A balanced search tree with a high number of keys in
each node

 Basic structure allows efficient searching much like
binary search tree:

17 42

3 9 22 47 81

This subtree
contains only values
less than 17.

This subtree contains
values between 17
and 42.

This subtree
contains values
greater than 42.

Binary search this node to figure
out which arrow to follow.

B-Tree Rules (Knuth)

 For an order-m B-Tree:
 Every node has at most m children
 Every non-leaf node (except root) has at least ⌈m/2⌉

children
 The root has at least 2 children unless it is itself a leaf
 A non-leaf node with k children has k – 1 keys
 All leaves appear on the same level

 For n keys:
Best case height is: log𝑚 𝑛 + 1

Worst case: log𝑚/2
𝑛+1

2

Insertion

 Values are always inserted at a leaf node:

 If leaf has no room, split the leaf and promote the
median value to the parent node (becomes the
separator between the two new children)

 If parent leaf in turn has no room, recursively
split/promote

 If splitting/promotion reaches root and root has
no room, split root and add a level to the tree

4/7/2019

4

Deletion

 If value is in leaf, remove, then rebalance if underflow
(too few keys in node)

 If internal node, then find nearest leaf descendant to
replace it with – rebalance leaf if this results in
underflow

 Rebalancing:
 If right sibling exists and has more than minimum # of

elements, do a left rotation to borrow one element
 Otherwise, if left sibling, etc.
 Else both the node and its sibling are small enough to

merge
 Have to pull separating element from parent into merged node
 This can cause underflow in parent – deal with recursively

FINAL THOUGHTS

Kinds of Indexes

 Earlier section described data itself being stored in a sorted
order (by primary key)
 Some databases (e.g., MS SQL Server) do this (“clustered index”)
 Indices other than primary key are called “Secondary indexes”

 Tiny extra overhead because secondary index must store some kind of
row pointer(s) to correct block on disk

 Extra lookup of actual data block since not stored in index

 PostgreSQL only has secondary indexes
 Tradeoff - more flexibility

 Other considerations: indexes on non-unique columns
 We’ll talk more about indexing in practice when we talk

about query optimization

Database Access Performance

Actual indexed query performance (e.g., flowers) tends to be better
than our 30ms example:
 Indexes tend to be on small keys, blocks have gotten large (4 – 16

Kb) – so can fit way more than 100 keys into an index block (e.g.
4Kb -> 1024 integer keys)

 Caching of important disk blocks in memory speeds up repeated
accesses – whole indices or even tables can fit in memory!
 First read may take 10-20ms
 Subsequent reads may be sub-millisecond

 Clever disk tricks:
 Striping
 Storing indices on different drive than data
 Sharding

