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CSCI 403 

Database Management

21 – Disks, File Organization, and B-
Trees

This Lecture

 How the files are stored on rotational media

 Strategies for reading/writing/storing 
database records

 B-Tree indexes

HARD DISK 

DRIVES

Rotational Media

Hard Drive Basics

Thin metal platters coated with a 
magnetic material, rotating at high 
speed.  Data bits are stored as 
differently oriented magnetic domains.

Read/write heads, one per platter side.  These 
float extremely close to the platters and detect 
or modify magnetic domains as the spinning 
disk brings them under the heads.

Stepper motor assembly.  The 
read/write heads are on the end of an 
array of arms which can swing to 
different distances from the disk center, 
thus accessing different “tracks”.

Data Organization

Data is stored in tracks, which are further 
broken into sectors.

Sectors typically hold between 512 –
4096 bytes.

At the hardware level, an entire sector is 
read or written at one time.  However, 
from the operating system perspective, 
an entire block is read/written.  A block 
is a higher level abstraction which may 
encompass multiple sectors.

For the rest of this discussion, we’ll 
assume a block == a sector.

track

sector 
(one 
segment)

Obviously this drawing is 
highly notional, as HDDs 
pack many more tracks and 
sectors onto a platter.

Access Time
 A block can be read or written extremely fast… once found.
 The cost to read a block is mostly due to the access time, the sum 

of:
 Seek time – time to move read/write heads to the right track
 Rotational latency – time to rotate until block is under read/write 

head

 Some numbers:
 Typical average seek time for a drive: 9ms
 Rotational latency for a high-end server drive (15,000 RPM): 2ms

 Notes:
 Caching, buffering, and other clever optimizations make these 

numbers hard to measure exactly
 Newer storage technologies (SSD, Optane, etc.) have completely 

different performance characteristics (for now, HDDs are still 
dominant in DB storage)
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Key Insight

 A program can do almost anything with a 
block of data in memory on a modern CPU in 
much less time than 10 ms

 That is, compared to a read, time to process the 
data is negligible

 Disk I/O is thus the primary bottleneck for 
database query latency FILE ORGANIZATION

How is a database table stored on a drive?

Organizing Records

 While a key facet of the modern database is data 
abstraction, the data ultimately has to be stored 
somewhere/somehow
 Intersection of hardware, software, and algorithms
 HDD technology has shaped the technology for 40+ years

 Many approaches to this in various databases
 We’ll explore a popular approach organized around 

primary keys
 This scheme will lead us to the idea of a hierarchical index 

and B-Trees
 Note that PostgreSQL (and probably others) use different 

schemes

Ordered Storage by Primary Key

 Store multiple records in each block
 Within blocks, order by primary key
 Maintain a list of blocks as well, ordered by primary key of first 

record in block

 Note we can now do binary search (O(log2 n)) lookups:
 Find a block holding a particular key
 Find a particular record within a block

 Issues:
 Insertion/deletion – what to do when out of room / how to fill 

gaps?
 Scaling: is it fast enough?
 What if we want to search by something other than primary 

key?

Issue 1: Insertion/Deletion

 When inserting a record, if no room:
 Must move records aside to make room
 This is expensive if we keep everything closed up tight
 Solution: keep some “spare” room around:

 If no room, split block into two blocks – now each is half full and 
insert is cheap

 Good performance, worst-case 2x storage requirement

 Similarly, when deleting, blocks may become largely 
empty:
 Requires lots of disk access for relatively few records 

stored
 Solution: merge adjacent blocks when less than half full

Issue 2: Scaling/Performance

 Suppose we have a table with: 
 100M records

 100 records per block (max)

 Assume a disk with 10ms access time

 What is cost to find a record given a primary key value?
 1M ≈ 220 blocks, so binary searchmust read 20 blocks in 

worst case

 10ms/block × 20 blocks = 200ms

 OK, that sounds fast, but consider a modern 
transaction processing system (e.g., stock trading) 
handling thousands of queries per second!
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Second Level Index

 Obviously this is not fast enough.  What to do?

 Solution: create an index, a kind of table storing 
primary keys together with pointers to the blocks 
containing them.
 Each record represents the first key in a block

 We can now stuff ~100 or more index records into a block

 How does this help?
 Now search 1/100th number of blocks: only search 10,000 

≈ 214 blocks

 Cost is ~140ms to search index + 10ms to lookup 
referenced block

Additional Levels

 150ms still not good enough:
 Make another index indexing the second level index
 Another 100x reduction  70ms + 10ms + 10ms cost

 Repeat again until all keys (at top level) fit into one 
block.  Cost ~30ms

 Cost of searching with hierarchical index no longer 
O(log2 n), more like O(log100 n)

 Generalizing this approach leads to the B-Tree data 
structure
 By default, all indices in PostgreSQL use B-Trees
 Not limited to primary keys!

B-TREES

B-Tree Data Structure

 A balanced search tree with a high number of keys in 
each node

 Basic structure allows efficient searching much like 
binary search tree:

17 42

3 9 22 47 81

This subtree 
contains only values 
less than 17.

This subtree contains 
values between 17 
and 42.

This subtree 
contains values 
greater than 42.

Binary search this node to figure 
out which arrow to follow.

B-Tree Rules (Knuth)

 For an order-m B-Tree:
 Every node has at most m children
 Every non-leaf node (except root) has at least ⌈m/2⌉

children
 The root has at least 2 children unless it is itself a leaf
 A non-leaf node with k children has k – 1 keys
 All leaves appear on the same level

 For n keys:
Best case height is: log𝑚 𝑛 + 1

Worst case:  log𝑚/2
𝑛+1

2

Insertion

 Values are always inserted at a leaf node:

 If leaf has no room, split the leaf and promote the 
median value to the parent node (becomes the 
separator between the two new children)

 If parent leaf in turn has no room, recursively 
split/promote

 If splitting/promotion reaches root and root has 
no room, split root and add a level to the tree
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Deletion

 If value is in leaf, remove, then rebalance if underflow 
(too few keys in node)

 If internal node, then find nearest leaf descendant to 
replace it with – rebalance leaf if this results in 
underflow

 Rebalancing:
 If right sibling exists and has more than minimum # of 

elements, do a left rotation to borrow one element
 Otherwise, if left sibling, etc.
 Else both the node and its sibling are small enough to 

merge
 Have to pull separating element from parent into merged node
 This can cause underflow in parent – deal with recursively

FINAL THOUGHTS

Kinds of Indexes

 Earlier section described data itself being stored in a sorted 
order (by primary key)
 Some databases (e.g., MS SQL Server) do this (“clustered index”)
 Indices other than primary key are called “Secondary indexes”

 Tiny extra overhead because secondary index must store some kind of 
row pointer(s) to correct block on disk

 Extra lookup of actual data block since not stored in index

 PostgreSQL only has secondary indexes 
 Tradeoff - more flexibility

 Other considerations: indexes on non-unique columns
 We’ll talk more about indexing in practice when we talk 

about query optimization

Database Access Performance

Actual indexed query performance (e.g., flowers) tends to be better 
than our 30ms example:
 Indexes tend to be on small keys, blocks have gotten large (4 – 16 

Kb) – so can fit way more than 100 keys into an index block (e.g. 
4Kb -> 1024 integer keys)

 Caching of important disk blocks in memory speeds up repeated 
accesses – whole indices or even tables can fit in memory!
 First read may take 10-20ms
 Subsequent reads may be sub-millisecond

 Clever disk tricks:
 Striping
 Storing indices on different drive than data
 Sharding


