
3/8/2019

1

CSCI 403 Database

Management

20 – Programming Against the
Database

This Lecture

An overview of various approaches to writing
software programs that connect to a SQL
database.

COMMONALITIES

Things All Software Must Do

 Load necessary libraries

 Establish a connection to the desired DB

 Communicate a query and data to the DB

 (If SELECT) receive and interpret result

 (If modification) commit or rollback changes

Libraries

 Language dependent

 DBMS dependent

 Often adhere to some standard

 Java -> JDBC

 Windows -> ODBC

 Python -> DB-API

 Etc.

Establishing a Connection

 You do this when you use psql or SQuirreL:

 Supply hostname (and optionally port), database
name, username, password

 Different ways to supply these for each library

 URIs increasingly popular

3/8/2019

2

Communicate a Query

We’ll see some examples of this in a bit…

Communicate Data

 Something we don’t see in query tools like psql: query
parameters
 In software, often want to re-use queries
 Also, security issues if we write data directly into our

queries
 Lecture on SQL injection attacks coming soon!

 So, use “prepared” queries
 Data not included – just placeholders (parameters)
 Data is passed separately

 Example (Python):
query = "SELECT * FROM mines_courses WHERE
course_id = $1";
cursor.execute(query, ("CSCI403",))

Interpret Results

 Data is returned as some kind of collection
 Python list

 Specialized object (Java ResultSet)

 Must extract rows/columns you need

 Data from DB has types
 In dynamic languages (Python, Javascript) these

will probably all be strings, but easily converted

 In statically typed languages (Java) you must
conform to types some how – this is a pain

Commit/Rollback

 A topic we’ve avoided until now: transactions
 A transaction wraps up groups of queries

 Provides atomicity
 Gives you the choice whether or not to make changes

permanent

 Can choose to “autocommit” (the default setting
for psql and SQuirreL)

 Otherwise, must commit (to make permanent) or
rollback (to undo) transaction
 This gets more complicated when working at higher-

level abstractions!

PARADIGMS

Low Level and High Level

 Software is all about abstractions

 SQL is an abstraction we use to talk to DB

 Programming languages abstract common
functionality into libraries

 Database connection libraries – lots of choices

 SQL

 Functional mapping

 Object-relational mapping (ORM)

G
re

at
er

 a
b

st
ra

ct
io

n

3/8/2019

3

SQL Is the Foundation

 At the base level of abstraction is SQL

 Libraries transmit SQL strings and data to DB

 Results returned in dynamic structures

 No lower level access (this may be surprising)

 Other libraries build on top

 E.g., higher level abstractions translate to SQL first

Example (Python)

connection = …

cursor = connection.cursor()

query = "SELECT * FROM
mines_courses WHERE course_id =
'CSCI403'"

cursor.execute(query)

results = cursor.fetchall()

Functional Mapping

 SQL is not part of (most) programming
languages

 So need some way to communicate SQL

 Base level is creating string SQL commands –
some people find this messy/unintuitive

 Simple SQL can be replaced with function calls

 Works for many use cases

 Must fall back to raw SQL for complex queries

Example (massive.js)

massive.js is a Javascript library for querying
PostgreSQL databases.

results = db.mines_courses.find(
{ course_id: "CSCI403" }

);

This is equivalent to executing:
SELECT * FROM mines_courses
WHERE course_id = 'CSCI403';

Object-Relational Mapping

 Object-oriented programming
 Very popular programming paradigm
 Outside the scope of this course 

 Object-relational “impedance mismatch”
 Objects store relationships with other objects
 SQL databases allow ad-hoc relationships
 This difference causes friction at the interface

 Object-oriented programmers want to deal with data
as objects
 Special purpose “OODBMSes”, not very popular/successful
 ORM tries to treat data in RDBMS as objects

Example (SqlAlchemy)

SqlAlchemy is a Python ORM; this snippet really
doesn’t show all that goes into an ORM.

Guest lecture on this topic in a few weeks!

session.query(Course).filter(Course
.id == 'CSCI403').all()

3/8/2019

4

Next Time

Programming against the database in Python.

