
1/8/2019

1

CSCI 403

Database Management

2

High-Level Concepts

History

What is data? What is a database?

Discussion time!

2

EARLY DAYS

3

Early Data Storage

Typical approach:

 Define application-specific fixed-length
“record”

 Within the record, fixed-length “fields”

 Byte-for-byte equivalent of structure in memory

 Store records on some storage medium:

 Punch card

 Paper or magnetic tape

 Disk

4

99999999
JONES

Records

5

TYPE: PERSON
ACCOUNT_NUM: DECIMAL[8]
LASTNAME: CHAR[15]
FIRSTNAME: CHAR[10]
BALANCE: FIXED[6,2]

Total: 41 bytes

Definition Instances

72821116
SMITH
JOHN
3904.08

14029936
PAINTERWAKEFIEL
CHRISTOPHE
740.31

Data Access

 Punch cards/tape:

 Little idea – that was before my time 

 Usually involved a specialist computer operator

 Often just loaded everything into memory

 Files on disk (random access):

 If you want record n, multiply by record size to
find byte offset from start of file

 Indices to speed search on specified fields

6

1/8/2019

2

99999999
JONES

Before Databases

7

TYPE: PERSON
ACCOUNT_NUM: DECIMAL[8]
LASTNAME: CHAR[15]
FIRSTNAME: CHAR[10]
BALANCE: FIXED[6,2]

Total: 41 bytes

14029936PAINTERWAKEFIELCHRISTOPHE0007403172821116SMITH˽˽˽˽˽˽˽˽˽˽JOHN˽…

Definition – lives in application Instances

As stored in file:

72821116
SMITH
JOHN
3904.08

14029936
PAINTERWAKEFIEL
CHRISTOPHE
740.31

Record 1 Record 2

Application Code Example

typedef struct {

char account_number[8];

char lastname[15];

char firstname[10];

char balance[8];

} person_record;

…

person get_person_by_index(int n) {

FILE* person_file;

person_record p;

person_file = fopen("person.dat", "r");

fseek(person_file, n * sizeof(person_record), SEEK_SET);

fread(&p, sizeof(person_record), 1, person_file);

fclose(person_file);

return p;

}

8

Note, this is without
error checking code…

Code Example, continued

person find_person_by_account_number(char[] account) {

FILE* person_file;

person_record p;

person_file = fopen("person.dat", "r");

while (!feof(person_file)) {

fread(&p, sizeof(person_record), 1, person_file);

if (!strncmp(p.account_number, account, sizeof(p.account_number))) {

fclose(person_file);

return p;

}

fseek(person_file, sizeof(person_record) – sizeof(p.account_number),

SEEK_CUR);

}

fclose(person_file);

strcpy(p.account_number, "NOMATCH");

return p;

}

9

Some Issues

 Hard-coded record definition in code: what if definition
needed to change?
 Re-write, rebuild, test all software
 Write special code to migrate data from old to new format

 Performance
 Sequential search expensive, unless you can hold all data in

memory
 Could make an index – but then have to maintain index as well

 Flexible access – how do we add/insert/delete?
 Application specific

 This code only works for person records
 Must write the same code over and over for different

applications

10

MODERN ERA

11

Modern Databases

Typical properties:

 Self-describing

 Program-data separation

 Storage abstraction

 Network multi-user access

 Client-server architecture

12

1/8/2019

3

Self-Describing

Suppose your “database” contains:

Without knowing the record structure, can you
figure out what data is being stored?

You need the record definition, too…

13

14029936PAINTERWAKEFIELCHRISTOPHE0007403172821116SMITH˽˽˽˽˽˽˽˽˽˽JOHN˽…

Metadata

 Store data description (metadata) with data
 The metadata is stored in the database catalog

 The catalog is in same format as any other data
 Thus, the catalog metadata is stored in the catalog!

 Just need to know how to read metadata from
the catalog
 Lets us describe/store many record types

 Any application that can query the catalog can
query any record type

14

Program-Data Separation

 Programs can evolve independently of data

 Without separation, a change to definition 

 Re-code and rebuild all software

 Migrate all data (by loading all records and re-
writing in new format)

 Follows from self-describing

 Many changes to data definition are non-breaking
to application (some still are, though…)

15

Data Abstraction

Owner to DBMS (Database Management System):

Q. Here’s my data. How will you store it?

A. Why should you care?
 When you give me data, I will store it.
 When you ask for the data, I will give it to you.
 I may change how I store your data from time to time.

A DBMS is much like a bank - you don’t get (or need) the
keys to the safe.

16

Network Multi-User Access

 Name kind of says it all

 Multiple users with simultaneous access

 Accessed remotely via network

 Eliminates bottlenecks

 Requires sophisticated transaction control

 Updates from one user should not destroy
updates from another user

 Airline ticketing example

17

Client-Server Architecture

 DBMS software lives on server
 Applications talk to server to via standard

protocol

 Similar to e.g. web browser/web server:
 One web server (http://mines.edu)
 Many users (and browsers – Chrome, Safari, Firefox...)

 Supports data abstraction, program-data
separation

18

1/8/2019

4

DATABASE HISTORY

19

Quick Timeline

 1956 – Hard drive technology introduced (IBM)
 1962 – “data-base” term invented (per OED)
 1964 – Integrated Data Store (IDS) released (GE)

 First “network model” DBMS

 1966-1968 – Information Management System (IMS) released (IBM)
 First “hierarchical model” DBMS

 1969 – CODASYL network database standard
 1970 – Paper by E.F. Codd (IBM) on relational model
 1973 – Start of INGRES (Berkeley research project)
 1977 – System R released (IBM)

 First commercial relational model DBMS
 Introduction of SQL

 1979 – Oracle released (Relational Software, now Oracle)
 1985 – Start of POSTGRES (Berkeley, successor to INGRES)

20

Network Model

 1964 - Integrated Data Store (IDS)
 Created by Charles Bachman (1924-2017) of GE

 1973 Turing Award winner
 Also invented (1965) early transaction control system

 Graph-based storage of records
 Records organized into named types
 “Sets” defining relationships between record types

 All records keyed with unique ID
 Disk location computable from ID
 Allowed fast navigation between records linked by ID

 Later standardized by CODASYL
 Closely tied to COBOL language
 Many vendors – at least one still sold today!

21

Hierarchical Model

 1966-1968 – Information Management System
(IMS)
 Invented at IBM

 Created for Apollo space program (tracking parts
for the Saturn V rocket)

 Still sold today!

 Records form a tree structure
 Think file structure on modern OS

 Fast navigation by pointers

22(not actual size)

Navigational DBMS

 Network and hierarchical model are
“navigational”

 Access to record is predicated on knowing key
value

 Data retrieval follows linkages (like pointers)

 The relational model is completely different…

23

Relational Model

 1970 – “A Relational Model of Data for Large
Shared Data Banks”

 E.F. Codd (1923-2003) of IBM

 Turing Award, 1981

 Initially met resistance inside IBM

 No desire to cannibalize success of IMS

 Eventually productized as System R (1977)

 System R also introduced SEQUEL (later SQL)

 More on the relational model soon…

24

1/8/2019

5

PostgreSQL

 INGRES project (Berkeley) started in 1973
 Michael Stonebraker (1943-)

 Turing Award, 2014

 Eugene Wong
 Based on technical papers from System R project
 QUEL query language
 Briefly commercialized
 Students from this project later founded Sybase

 Technology from Sybase now MS SQL Server

 POSTGRES project (Berkeley) started in 1985
 Successor to INGRES
 Goal to address problems with relational databases of the time
 Open sourced in 1994
 Postgres95 with SQL in 1995 (renamed PostgreSQL in 1996)

25

Relational Model Preview

 Moves away from pointer-based (navigational)

 Based on set theory

 Flexible – dynamic views of data created as
needed

 Initially slow compared to navigational, but
now the dominant technology
 Dramatically improves data abstraction and

program-data separation

 Oracle, SQL Server, PostgreSQL, MySQL, etc.

26

New (Old) Ideas

 1990s – OODBMSes
 Persistent store for objects
 Came with rise of object-oriented programming (OOP)
 Essentially reverts to navigational model
 Subsumed by RDBMSes like Oracle, PostgreSQL

 New data types – XML, BLOB, GIS
 Also subsumed by RDBMSes

 Recent: NoSQL (“Not Only SQL”)
 Response to demands of Big Data
 Lots of flavors
 We’ll talk more about these near the end of the course
 Some reversion to navigational in these, too

 Current: NewSQL - relational guarantees + Big Data robustness

27

Up Next

 Next lecture:

Informal introduction to queries in SQL.

 Reading: Chapter 6: “Basic SQL”

 Friday, January 11

 Project 0 due

 Project 1 – Connect assigned

28

