
1/8/2019

1

CSCI 403

Database Management

2

High-Level Concepts

History

What is data? What is a database?

Discussion time!

2

EARLY DAYS

3

Early Data Storage

Typical approach:

 Define application-specific fixed-length
“record”

 Within the record, fixed-length “fields”

 Byte-for-byte equivalent of structure in memory

 Store records on some storage medium:

 Punch card

 Paper or magnetic tape

 Disk

4

99999999
JONES

Records

5

TYPE: PERSON
ACCOUNT_NUM: DECIMAL[8]
LASTNAME: CHAR[15]
FIRSTNAME: CHAR[10]
BALANCE: FIXED[6,2]

Total: 41 bytes

Definition Instances

72821116
SMITH
JOHN
3904.08

14029936
PAINTERWAKEFIEL
CHRISTOPHE
740.31

Data Access

 Punch cards/tape:

 Little idea – that was before my time

 Usually involved a specialist computer operator

 Often just loaded everything into memory

 Files on disk (random access):

 If you want record n, multiply by record size to
find byte offset from start of file

 Indices to speed search on specified fields

6

1/8/2019

2

99999999
JONES

Before Databases

7

TYPE: PERSON
ACCOUNT_NUM: DECIMAL[8]
LASTNAME: CHAR[15]
FIRSTNAME: CHAR[10]
BALANCE: FIXED[6,2]

Total: 41 bytes

14029936PAINTERWAKEFIELCHRISTOPHE0007403172821116SMITH˽˽˽˽˽˽˽˽˽˽JOHN˽…

Definition – lives in application Instances

As stored in file:

72821116
SMITH
JOHN
3904.08

14029936
PAINTERWAKEFIEL
CHRISTOPHE
740.31

Record 1 Record 2

Application Code Example

typedef struct {

char account_number[8];

char lastname[15];

char firstname[10];

char balance[8];

} person_record;

…

person get_person_by_index(int n) {

FILE* person_file;

person_record p;

person_file = fopen("person.dat", "r");

fseek(person_file, n * sizeof(person_record), SEEK_SET);

fread(&p, sizeof(person_record), 1, person_file);

fclose(person_file);

return p;

}

8

Note, this is without
error checking code…

Code Example, continued

person find_person_by_account_number(char[] account) {

FILE* person_file;

person_record p;

person_file = fopen("person.dat", "r");

while (!feof(person_file)) {

fread(&p, sizeof(person_record), 1, person_file);

if (!strncmp(p.account_number, account, sizeof(p.account_number))) {

fclose(person_file);

return p;

}

fseek(person_file, sizeof(person_record) – sizeof(p.account_number),

SEEK_CUR);

}

fclose(person_file);

strcpy(p.account_number, "NOMATCH");

return p;

}

9

Some Issues

 Hard-coded record definition in code: what if definition
needed to change?
 Re-write, rebuild, test all software
 Write special code to migrate data from old to new format

 Performance
 Sequential search expensive, unless you can hold all data in

memory
 Could make an index – but then have to maintain index as well

 Flexible access – how do we add/insert/delete?
 Application specific

 This code only works for person records
 Must write the same code over and over for different

applications

10

MODERN ERA

11

Modern Databases

Typical properties:

 Self-describing

 Program-data separation

 Storage abstraction

 Network multi-user access

 Client-server architecture

12

1/8/2019

3

Self-Describing

Suppose your “database” contains:

Without knowing the record structure, can you
figure out what data is being stored?

You need the record definition, too…

13

14029936PAINTERWAKEFIELCHRISTOPHE0007403172821116SMITH˽˽˽˽˽˽˽˽˽˽JOHN˽…

Metadata

 Store data description (metadata) with data
 The metadata is stored in the database catalog

 The catalog is in same format as any other data
 Thus, the catalog metadata is stored in the catalog!

 Just need to know how to read metadata from
the catalog
 Lets us describe/store many record types

 Any application that can query the catalog can
query any record type

14

Program-Data Separation

 Programs can evolve independently of data

 Without separation, a change to definition

 Re-code and rebuild all software

 Migrate all data (by loading all records and re-
writing in new format)

 Follows from self-describing

 Many changes to data definition are non-breaking
to application (some still are, though…)

15

Data Abstraction

Owner to DBMS (Database Management System):

Q. Here’s my data. How will you store it?

A. Why should you care?
 When you give me data, I will store it.
 When you ask for the data, I will give it to you.
 I may change how I store your data from time to time.

A DBMS is much like a bank - you don’t get (or need) the
keys to the safe.

16

Network Multi-User Access

 Name kind of says it all

 Multiple users with simultaneous access

 Accessed remotely via network

 Eliminates bottlenecks

 Requires sophisticated transaction control

 Updates from one user should not destroy
updates from another user

 Airline ticketing example

17

Client-Server Architecture

 DBMS software lives on server
 Applications talk to server to via standard

protocol

 Similar to e.g. web browser/web server:
 One web server (http://mines.edu)
 Many users (and browsers – Chrome, Safari, Firefox...)

 Supports data abstraction, program-data
separation

18

1/8/2019

4

DATABASE HISTORY

19

Quick Timeline

 1956 – Hard drive technology introduced (IBM)
 1962 – “data-base” term invented (per OED)
 1964 – Integrated Data Store (IDS) released (GE)

 First “network model” DBMS

 1966-1968 – Information Management System (IMS) released (IBM)
 First “hierarchical model” DBMS

 1969 – CODASYL network database standard
 1970 – Paper by E.F. Codd (IBM) on relational model
 1973 – Start of INGRES (Berkeley research project)
 1977 – System R released (IBM)

 First commercial relational model DBMS
 Introduction of SQL

 1979 – Oracle released (Relational Software, now Oracle)
 1985 – Start of POSTGRES (Berkeley, successor to INGRES)

20

Network Model

 1964 - Integrated Data Store (IDS)
 Created by Charles Bachman (1924-2017) of GE

 1973 Turing Award winner
 Also invented (1965) early transaction control system

 Graph-based storage of records
 Records organized into named types
 “Sets” defining relationships between record types

 All records keyed with unique ID
 Disk location computable from ID
 Allowed fast navigation between records linked by ID

 Later standardized by CODASYL
 Closely tied to COBOL language
 Many vendors – at least one still sold today!

21

Hierarchical Model

 1966-1968 – Information Management System
(IMS)
 Invented at IBM

 Created for Apollo space program (tracking parts
for the Saturn V rocket)

 Still sold today!

 Records form a tree structure
 Think file structure on modern OS

 Fast navigation by pointers

22(not actual size)

Navigational DBMS

 Network and hierarchical model are
“navigational”

 Access to record is predicated on knowing key
value

 Data retrieval follows linkages (like pointers)

 The relational model is completely different…

23

Relational Model

 1970 – “A Relational Model of Data for Large
Shared Data Banks”

 E.F. Codd (1923-2003) of IBM

 Turing Award, 1981

 Initially met resistance inside IBM

 No desire to cannibalize success of IMS

 Eventually productized as System R (1977)

 System R also introduced SEQUEL (later SQL)

 More on the relational model soon…

24

1/8/2019

5

PostgreSQL

 INGRES project (Berkeley) started in 1973
 Michael Stonebraker (1943-)

 Turing Award, 2014

 Eugene Wong
 Based on technical papers from System R project
 QUEL query language
 Briefly commercialized
 Students from this project later founded Sybase

 Technology from Sybase now MS SQL Server

 POSTGRES project (Berkeley) started in 1985
 Successor to INGRES
 Goal to address problems with relational databases of the time
 Open sourced in 1994
 Postgres95 with SQL in 1995 (renamed PostgreSQL in 1996)

25

Relational Model Preview

 Moves away from pointer-based (navigational)

 Based on set theory

 Flexible – dynamic views of data created as
needed

 Initially slow compared to navigational, but
now the dominant technology
 Dramatically improves data abstraction and

program-data separation

 Oracle, SQL Server, PostgreSQL, MySQL, etc.

26

New (Old) Ideas

 1990s – OODBMSes
 Persistent store for objects
 Came with rise of object-oriented programming (OOP)
 Essentially reverts to navigational model
 Subsumed by RDBMSes like Oracle, PostgreSQL

 New data types – XML, BLOB, GIS
 Also subsumed by RDBMSes

 Recent: NoSQL (“Not Only SQL”)
 Response to demands of Big Data
 Lots of flavors
 We’ll talk more about these near the end of the course
 Some reversion to navigational in these, too

 Current: NewSQL - relational guarantees + Big Data robustness

27

Up Next

 Next lecture:

Informal introduction to queries in SQL.

 Reading: Chapter 6: “Basic SQL”

 Friday, January 11

 Project 0 due

 Project 1 – Connect assigned

28

